Log in

Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear forced vibration characteristics of functionally graded carbon nanotube reinforced composite (FG-CNTRC) circular cylindrical shells are investigated. On the basis of Reddy’s first-order shear deformation theory, von Kármán geometric nonlinearity and Hamilton’s principle, the equations of motion are derived. The Galerkin technique is applied to discretize the partial differential equations into nonlinear ordinary differential equations, which are reduced by using Volmir’s assumption and the static condensation method. The incremental harmonic balance method is applied to analyze the dynamic response of FG-CNTRC cylindrical shells. A convergence study on the mode expansions is conducted by considering both axisymmetric and asymmetric modes. The natural frequencies and the resonance responses are compared with existing studies to examine the validity of this study. The effects of distribution and volume fraction of carbon nanotube, thickness-to-radius ratio, length-to-radius ratio, dimensionless radial excitation amplitude and dam** ratio on the resonance responses of FG-CNTRC cylindrical shells are discussed. The results show that the reduced model of the system is reasonable. The frequency responses of FG-CNTRC cylindrical shells show both hardening and softening types of nonlinearities, and they are greatly influenced by the change of the fundamental vibrational mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  2. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006). https://doi.org/10.1016/j.carbon.2006.02.038

    Article  Google Scholar 

  3. Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. Part A: Appl. Sci. Manuf. 37(1), 114–121 (2006). https://doi.org/10.1016/j.compositesa.2005.04.009

    Article  Google Scholar 

  4. Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput. Methods Appl. Mech. Eng. 193(17–20), 1773–1788 (2004). https://doi.org/10.1016/j.cma.2003.12.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39(2), 315–323 (2007). https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  Google Scholar 

  6. Giannopoulos, G.I., Kakavas, P.A., Anifantis, N.K.: Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Comput. Mater. Sci. 41(4), 561–569 (2008). https://doi.org/10.1016/j.commatsci.2007.05.016

    Article  Google Scholar 

  7. Kwon, H., Bradbury, C.R., Leparoux, M.: Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13(4), 325–329 (2011). https://doi.org/10.1002/adem.201000251

    Article  Google Scholar 

  8. Shen, H.-S., He, X.Q., Yang, D.-Q.: Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations. Int. J. Non-Linear Mech. 91, 69–75 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.02.010

    Article  Google Scholar 

  9. Shen, H.-S., **ang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013). https://doi.org/10.1016/j.engstruct.2013.06.002

    Article  Google Scholar 

  10. Lin, F., **ang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38(15–16), 3741–3754 (2014). https://doi.org/10.1016/j.apm.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Ke, L.-L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010). https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  12. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013). https://doi.org/10.1016/j.commatsci.2013.01.028

    Article  Google Scholar 

  13. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Sadeghi, F.: Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 113, 316–327 (2014). https://doi.org/10.1016/j.compstruct.2014.03.015

    Article  Google Scholar 

  14. Gholami, R., Ansari, R., Gholami, Y.: Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams. Compos. Struct. 174, 45–58 (2017). https://doi.org/10.1016/j.compstruct.2017.04.042

    Article  Google Scholar 

  15. Wu, H.L., Yang, J., Kitipornchai, S.: Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos. Part B: Eng. 90, 86–96 (2016). https://doi.org/10.1016/j.compositesb.2015.12.007

    Article  Google Scholar 

  16. Wu, H.L., Yang, J., Kitipornchai, S.: Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin-Walled Struct. 108, 225–233 (2016). https://doi.org/10.1016/j.tws.2016.08.024

    Article  Google Scholar 

  17. Mirzaei, M., Kiani, Y.: Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 227(7), 1869–1884 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wu, Z., Zhang, Y., Yao, G., Yang, Z.: Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams. Int. J. Mech. Sci. 153–154, 321–340 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.015

    Article  Google Scholar 

  19. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91(1), 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  20. Wang, Z.-X., Shen, H.-S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70(1), 735–754 (2012). https://doi.org/10.1007/s11071-012-0491-2

    Article  MathSciNet  Google Scholar 

  21. Shen, H.S., Zhu, Z.H.: Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments. Comput. Mater. Contin. 18(2), 155–182 (2010)

    MathSciNet  Google Scholar 

  22. Zhang, L.W., Zhang, Y., Zou, G.L., Liew, K.M.: Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos. Struct. 149, 247–260 (2016). https://doi.org/10.1016/j.compstruct.2016.04.019

    Article  Google Scholar 

  23. Lei, Z.X., Zhang, L.W., Liew, K.M.: Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations. Eng. Anal. Bound. Elem. 64, 1–11 (2016). https://doi.org/10.1016/j.enganabound.2015.11.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Lei, Z.X., Zhang, L.W., Liew, K.M.: Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015). https://doi.org/10.1016/j.compstruct.2015.03.019

    Article  Google Scholar 

  25. Sobhy, M.: Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings. Eng. Struct. 182, 198–212 (2019). https://doi.org/10.1016/j.engstruct.2018.12.071

    Article  Google Scholar 

  26. Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016). https://doi.org/10.1016/j.ast.2016.08.018

    Article  Google Scholar 

  27. Kiani, Y., Mirzaei, M.: Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerosp. Sci. Technol. 77, 388–398 (2018). https://doi.org/10.1016/j.ast.2018.03.022

    Article  Google Scholar 

  28. Kiani, Y.: Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mech. 228(4), 1303–1319 (2016). https://doi.org/10.1007/s00707-016-1781-4

    Article  MathSciNet  Google Scholar 

  29. Shen, H.-S., **ang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213–216, 196–205 (2012). https://doi.org/10.1016/j.cma.2011.11.025

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: axially-loaded shells. Compos. Struct. 93(8), 2096–2108 (2011). https://doi.org/10.1016/j.compstruct.2011.02.011

    Article  Google Scholar 

  31. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: pressure-loaded shells. Compos. Struct. 93(10), 2496–2503 (2011). https://doi.org/10.1016/j.compstruct.2011.04.005

    Article  Google Scholar 

  32. Thang, P.T., Thoi, T.N., Lee, J.: Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections. Eur. J. Mech. A Solids 73, 483–491 (2019). https://doi.org/10.1016/j.euromechsol.2018.10.008

    Article  MathSciNet  MATH  Google Scholar 

  33. Qin, Z., Pang, X., Safaei, B., Chu, F.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019). https://doi.org/10.1016/j.compstruct.2019.04.046

    Article  Google Scholar 

  34. Song, Z.G., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int. J. Mech. Sci. 115–116, 339–347 (2016). https://doi.org/10.1016/j.ijmecsci.2016.06.020

    Article  Google Scholar 

  35. Zhang, L.W., Song, Z.G., Qiao, P., Liew, K.M.: Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Comput. Methods Appl. Mech. Eng. 313, 889–903 (2017). https://doi.org/10.1016/j.cma.2016.10.020

    Article  MathSciNet  MATH  Google Scholar 

  36. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. Acta Mech. 227(2), 581–599 (2015). https://doi.org/10.1007/s00707-015-1479-z

    Article  MathSciNet  MATH  Google Scholar 

  37. Ansari, R., Torabi, J., Faghih Shojaei, M.: Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach. J. Vib. Control 24(6), 1123–1144 (2016). https://doi.org/10.1177/1077546316659172

    Article  MathSciNet  MATH  Google Scholar 

  38. Ansari, R., Torabi, J., Shojaei, M.F.: Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method. Eur. J. Mech. A Solids 60, 166–182 (2016). https://doi.org/10.1016/j.euromechsol.2016.07.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Van Thanh, N., Dinh Quang, V., Dinh Khoa, N., Seung-Eock, K., Dinh Duc, N.: Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636217752243

    Article  Google Scholar 

  40. Duc, N.D., Hadavinia, H., Quan, T.Q., Khoa, N.D.: Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment. Eur. J. Mech. A Solids 75, 355–366 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.024

    Article  MathSciNet  MATH  Google Scholar 

  41. Shojaee, M., Setoodeh, A.R., Malekzadeh, P.: Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method. Acta Mech. 228(7), 2691–2711 (2017). https://doi.org/10.1007/s00707-017-1846-z

    Article  MathSciNet  MATH  Google Scholar 

  42. Chakraborty, S., Dey, T., Kumar, R.: Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos. Part B: Eng. 168, 1–14 (2019). https://doi.org/10.1016/j.compositesb.2018.12.051

    Article  Google Scholar 

  43. Pouresmaeeli, S., Fazelzadeh, S.A.: Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech. 227(10), 2765–2794 (2016). https://doi.org/10.1007/s00707-016-1647-9

    Article  MathSciNet  Google Scholar 

  44. Cheung, Y.K.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

  45. Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013). https://doi.org/10.1016/j.tws.2013.01.009

    Article  Google Scholar 

  46. Pellicano, F., Amabili, M., Païdoussis, M.: Effect of the geometry on the non-linear vibration of circular cylindrical shells. Int. J. Non-Linear Mech. 37(7), 1181–1198 (2002)

    Article  Google Scholar 

  47. Volmir, A.S.: Nonlinear Dynamic of Plates and Shells. Science, Moskow (1972)

    Google Scholar 

  48. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the National Natural Science Foundation of China (Grant No. U1708254) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Rewrite Eq. (23) in vector form as

$$\begin{aligned} \begin{aligned}&u(x,\theta ,t)={\mathbf {U}}^{{\mathrm {T}}}(x,\theta ){\mathbf {q}}_{u} (t), \quad v(x,\theta ,t)={\mathbf {V}}^{{\mathrm {T}}}(x,\theta ){\mathbf {q}}_{v} (t), \quad w(x,\theta ,t)={\mathbf {W}}^{{\mathrm {T}}}(x,\theta ){\mathbf {q}}_{w} (t),\\ {}&\phi _{x} (x,\theta ,t)={{{\varvec{\Phi }} }}_{x}^{\mathrm {T}} (x,\theta ){\mathbf {q}}_{\phi _{x} } (t), \quad \phi _{\theta } (x,\theta ,t)={{{\varvec{\Phi }} }}_{\theta }^{\mathrm {T}} (x,\theta ){\mathbf {q}}_{\phi _{\theta } } (t), \end{aligned} \end{aligned}$$

where \(U_{m,jn} (x,\theta )=\varPhi _{xm,jn} (x,\theta )=\cos (m\pi x)\cos (jn\theta )\), \(V_{m,jn} (x,\theta )=\varPhi _{\theta m,jn} (x,\theta )=\sin (m\pi x)\sin (jn\theta )\) and \(W_{m,jn} (x,\theta )=\sin (m\pi x)\cos (jn\theta )\).

The elements of the matrix \({\mathbf{M}}\) are

$$\begin{aligned} \begin{aligned} {\mathbf {M}}_{\mathrm {11}}=&{} \int _0^L {\int _0^{2\pi } {I_{0} {\mathbf {UU}}^{\mathrm {T}}} } \text{ d } \theta \, \text{ d } x, \quad {\mathbf {M}}_{\mathrm {14}} =\int _0^L {\int _0^{2\pi } {I_{1} {\mathbf {U}}{\varvec{\Phi }} _{x}^{\mathrm {T}} } } \text{ d } \theta \,\text{ d } x;\\ {\mathbf {M}}_{\mathrm {22}}=&{} \int _0^L {\int _0^{2\pi } {I_{0} {\mathbf {VV}}^{\mathrm {T}}} } \text{ d } \theta \,\text{ d } x, \quad {\mathbf {M}}_{\mathrm {25}} =\int _0^L \int _0^{2\pi } {I_{1} \mathbf {V}{\varvec{\Phi }}_{\theta }^{\mathrm {T}}} \text{ d } \theta \,\text{ d }\,x,\\ {\mathbf {M}}_{\mathrm {33}}=&{} \int _0^L {\int _0^{2\pi } {I_{0} {\mathbf {WW}}^{\mathrm {T}}} } \text{ d } \theta \,\text{ d }\,x;\\ {\mathbf {M}}_{\mathrm {41}}=&{} \int _0^L {\int _0^{2\pi } {I_{1} {{{\varvec{\Phi }}}}_{x} {\mathbf {U}}^{{\mathrm {T}}}} } \text{ d } \theta \,\text{ d }\,x, \quad {\mathbf {M}}_{\mathrm {44}} =\int _0^L {\int _0^{2\pi } {I_{2} {{{\varvec{\Phi }} }}_{x} {{{\varvec{\Phi }} }}_{x}^{\mathrm {T}} } } \text{ d }\,\theta \,\text{ d }\,x;\\ {\mathbf {M}}_{\mathrm {52}}=&{} \int _0^L {\int _0^{2\pi } {I_{1} {{{\varvec{\Phi }} }}_{\theta } {\mathbf {V}}^{\mathrm {T}}} } \text{ d }\,\theta \, \text{ d }\,x, \quad {\mathbf {M}}_{\mathrm {55}} =\int _0^L {\int _0^{2\pi } {I_{2} {{{\varvec{\Phi }} }}_{\theta } {{{\varvec{\Phi }} }}_{\theta }^{\mathrm {T}} } } \text{ d }\,\theta \,\text{ d }\,x. \end{aligned} \end{aligned}$$

The elements of the matrix \({\mathbf{K}}\) are

$$\begin{aligned} {\mathbf{K}}_{\mathrm{11}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {a_{11} {\mathbf{U}}\frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x^{2}}+a_{66} \lambda _{1}^{2} {\mathbf{U}}\frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x, \quad {\mathbf{K}}_{\mathrm{12}} =-\left( {a_{12} +a_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{U}}\frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{13}}= & {} -a_{12} \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{U}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x, \quad {\mathbf{K}}_{\mathrm{14}} =-\int _0^1 {\int _0^{2\pi } {\left( {b_{11} {\mathbf{U}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x^{2}}+b_{66} \lambda _{1}^{2} {\mathbf{U}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{15}}= & {} -\left( {b_{12} +b_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{U}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x;\\ {\mathbf{K}}_{\mathrm{21}}= & {} -\left( {a_{12} +a_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{V}}\frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \quad {\mathbf{K}}_{\mathrm{22}} =-\int _0^1 {\int _0^{2\pi } {\left( {a_{66} {\mathbf{V}}\frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x^{2}}+a_{22} \lambda _{1}^{2} {\mathbf{V}}\frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{23}}= & {} -a_{22} \lambda _{1}^{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{V}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \quad {\mathbf{K}}_{\mathrm{24}} =-\left( {b_{12} +b_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{V}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{25}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {b_{66} {\mathbf{V}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x^{2}}+b_{22} \lambda _{1}^{2} {\mathbf{V}}\frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x;\\ {\mathbf{K}}_{\mathrm{31}}= & {} a_{12} \lambda _{1} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{U}}^{\mathrm{T}}}{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x, \quad {\mathbf{K}}_{\mathrm{32}} =a_{22} \lambda _{1}^{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{V}}^{\mathrm{T}}}{\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{33}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {a_{55} {\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{44} \lambda _{1}^{2} {\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}-a_{22} \lambda _{1}^{2} {\mathbf{WW}}^{\mathrm{T}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{34}}= & {} -\left( {\frac{a_{55} }{\lambda _{3} }-b_{12} \lambda _{1} } \right) \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{35}}= & {} -\left( {a_{44} \frac{\lambda _{1} }{\lambda _{3} }-b_{22} \lambda _{1}^{2} } \right) \int _0^1 \int _0^{2\pi } {{\mathbf{W}}{\varvec{\Phi }}_{\theta } \frac{\partial {{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial \theta }} \hbox {d}\,\theta \,\hbox {d}\,x;\\ {\mathbf{K}}_{\mathrm{41}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {b_{11} {{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x^{2}}+b_{66} \lambda _{1}^{2} {{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{42}}= & {} -\left( {b_{12} +b_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{43}}= & {} -\left( {b_{12} \lambda _{1} -\frac{a_{55} }{\lambda _{3} }} \right) \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{x} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{44}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {d_{11} {{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x^{2}}+d_{66} \lambda _{1}^{2} {{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial \theta ^{2}}-\frac{a_{55} }{\lambda _{3}^{2} }{{{\varvec{\Phi }} }}_{x} {{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} } \right) } } \hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{\mathrm{45}}= & {} -\left( {d_{12} +d_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{x} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x;\\ {\mathbf{K}}_{\mathrm{51}}= & {} -\left( {b_{12} +b_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{\theta } \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{52}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {b_{66} {{{\varvec{\Phi }} }}_{\theta } \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x^{2}}+b_{22} \lambda _{1}^{2} {{{\varvec{\Phi }}}}_{\theta } \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{53}}= & {} -\left( {b_{22} \lambda _{1}^{2} -a_{44} \frac{\lambda _{1} }{\lambda _{3} }} \right) \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{\theta } \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{54}}= & {} -\left( {d_{12} +d_{66} } \right) \lambda _{1} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{\theta } \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x, \\ {\mathbf{K}}_{\mathrm{55}}= & {} -\int _0^1 {\int _0^{2\pi } {\left( {d_{66} {{{\varvec{\Phi }} }}_{\theta } \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x^{2}}+d_{22} \lambda _{1}^{2} {{{\varvec{\Phi }} }}_{\theta } \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial \theta ^{2}}-\frac{a_{44} }{\lambda _{3}^{2} }{{{\varvec{\Phi }} }}_{\theta } {{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} } \right) } } \hbox {d}\,\theta \,\hbox {d}\,x. \end{aligned}$$

The elements of the matrix \({\mathbf{K}}^{(2)}\) are

$$\begin{aligned} {\mathbf{K}}_{13}^{(2)}&=-\int _0^1 {\int _0^{2\pi } {{\mathbf{U}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \left( {a_{11} \lambda _{3} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{66} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\left( {a_{12} +a_{66} } \right) \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{U}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x ;\\ {\mathbf{K}}_{23}^{(2)}&=-\left( {a_{12} +a_{66} } \right) \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{V}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{V}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \left( {a_{66} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x ;\\ {\mathbf{K}}_{31}^{(2)}&=-\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \left( {a_{11} \lambda _{3} \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x^{2}}+a_{66} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\left( {a_{12} +a_{66} } \right) \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{U}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {a_{11} \lambda _{3} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{12} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} \frac{\partial {\mathbf{U}}^{\mathrm{T}}}{\partial x}\hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -2a_{66} \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } {\mathbf{q}}_{w} \frac{\partial {\mathbf{U}}^{\mathrm{T}}}{\partial \theta }\hbox {d}\,\theta \,\hbox {d}\,x ,\\ {\mathbf{K}}_{32}^{(2)}&=-\left( {a_{12} +a_{66} } \right) \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \left( {a_{66} \lambda _{2} \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial x^{2}}+a_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{V}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -2a_{66} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } {\mathbf{q}}_{w} \frac{\partial {\mathbf{V}}^{\mathrm{T}}}{\partial x}\hbox {d}\,\theta \,\hbox {d}\,x\\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {a_{12} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} \frac{\partial {\mathbf{V}}^{\mathrm{T}}}{\partial \theta }\hbox {d}\,\theta \,\hbox {d}\,x,\\ {\mathbf{K}}_{33}^{(2)}&=-\frac{a_{12} }{2}\lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x-\frac{a_{22} }{2}\lambda _{1}^{2} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {a_{12} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+a_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} {\mathbf{W}}^{\mathrm{T}}\hbox {d}\,\theta \,\hbox {d}\,x ,\\ {\mathbf{K}}_{34}^{(2)}&=-\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \left( {b_{11} \lambda _{3} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x^{2}}+b_{66} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\left( {b_{12} +b_{66} } \right) \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {b_{11} \lambda _{3} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+b_{12} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} \frac{\partial {{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial x}\hbox {d}\,\theta \,\hbox {d}\,x\\&\quad -2b_{66} \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }{\mathbf{q}}_{w} } } \frac{\partial {{{\varvec{\Phi }} }}_{x}^{\mathrm{T}} }{\partial \theta }\hbox {d}\,\theta \,\hbox {d}\,x ,\\ {\mathbf{K}}_{35}^{(2)}&=-\left( {b_{12} +b_{66} } \right) \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \left( {b_{66} \lambda _{2} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x^{2}}+b_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -2b_{66} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }{\mathbf{q}}_{w} } } \frac{\partial {{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial x}\hbox {d}\,\theta \,\hbox {d}\,x\\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {b_{12} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+b_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} \frac{\partial {{{\varvec{\Phi }} }}_{\theta }^{\mathrm{T}} }{\partial \theta }\hbox {d}\,\theta \,\hbox {d}\,x ;\\ {\mathbf{K}}_{43}^{(2)}&=-\int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{x} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \left( {b_{11} \lambda _{3} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+b_{66} \lambda _{1} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\left( {b_{12} +b_{66} } \right) \lambda _{1} \lambda _{2} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{x} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial ^{2}\mathrm{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x ;\\ {\mathbf{K}}_{53}^{(2)}&=-\left( {b_{12} +b_{66} } \right) \lambda _{2} \int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{\theta } \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{{{\varvec{\Phi }} }}_{\theta } \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \left( {b_{66} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+b_{22} \lambda _{1}^{2} \lambda _{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } \hbox {d}\,\theta \,\hbox {d}\,x . \end{aligned}$$

The elements of the matrix \({\mathbf{K}}^{(3)}\) are

$$\begin{aligned} \begin{aligned} {\mathbf{K}}_{33}^{(3)}&=-\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {\frac{3a_{11} }{2}\lambda _{3}^{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+\frac{a_{12} +2a_{66} }{2}\lambda _{2}^{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) {\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}} } \hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\left( {\frac{a_{12} +2a_{66} }{2}\lambda _{2}^{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x^{2}}+\frac{3a_{22} }{2}\lambda _{1}^{2} \lambda _{2}^{2} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial \theta ^{2}}} \right) } } {\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }\hbox {d}\,\theta \,\hbox {d}\,x \\&\quad -\left( {2a_{12} +4a_{66} } \right) \lambda _{2}^{2} \int _0^1 {\int _0^{2\pi } {{\mathbf{W}}\frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial x}{\mathbf{q}}_{w} \frac{\partial {\mathbf{W}}^{\mathrm{T}}}{\partial \theta }{\mathbf{q}}_{w} \frac{\partial ^{2}{\mathbf{W}}^{\mathrm{T}}}{\partial x\partial \theta }} } \hbox {d}\,\theta \,\hbox {d}\,x. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, Y. & Yao, G. Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech 231, 2497–2519 (2020). https://doi.org/10.1007/s00707-020-02650-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02650-6

Navigation