Log in

Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article deals with the vibration analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell structures. The material properties of an FG-CNTRC shell are graded smoothly through the thickness direction of the shell according to uniform distribution and some other functionally graded (FG) distributions (such as FG-X, FG-V, FG-O and FG-\({\Lambda}\)) of the volume fraction of the carbon nanotube (CNT), and the effective material properties are estimated by employing the extended rule of mixture. An eight-noded shell element considering transverse shear effect according to Mindlin’s hypothesis has been employed for the finite element modelling and analysis of the composite shell structures. The formulation of the shell midsurface in an arbitrary curvilinear coordinate system based on the tensorial notation is also presented. The Rayleigh dam** model has been implemented in order to study the effects of carbon nanotubes (CNTs) on the dam** capacity of such shell structures. Different types of shell panels have been analyzed in order to study the impulse and frequency responses. The influences of CNT volume fraction, CNT distribution, geometry of the shell and material distributions on the dynamic behavior of FG-CNTRC shell structures have also been presented and discussed. Various types of FG-CNTRC shell structures (such as spherical, ellipsoidal, doubly curved and cylindrical) have been analyzed and discussed in order to compare studies in terms of settling time, first resonant frequency and absolute amplitude corresponding to first resonant frequency based on the impulse and frequency responses, and the effects of CNTs on vibration responses of such shell structures are also presented. The results show that the CNT distribution and volume fraction of CNT have a significant effect on vibration and dam** characteristics of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({{V_{{\rm cnt}}, V_{\rm m}}}\) :

Carbon nanotube and matrix volume fraction

\({{E_{11}^{{\rm cnt}}}}\) and \({{{E}_{22}^{{\rm cnt}}}}\) :

Young’s moduli of CNT in longitudinal and transverse directions

\({{{G}_{12}^{{\rm cnt}}}}\) :

Shear modulus of CNT

\({{{E}_{\rm m}}}\) and \({{{G}_{\rm m}}}\) :

Young’s moduli and shear modulus of the isotropic matrix.

\({{\eta _1, \eta _2}}\) and \({{\eta _3}}\) :

CNT efficiency parameters

\({{\upsilon_{12}^{{\rm cnt}}}}\) and \({{\upsilon_{\rm m}}}\) :

Poisson’s ratio of CNT and matrix

h :

Thickness

\({{{\rm nd}}}\) :

Number of nodes in an element

\({{N_i}}\) :

Shape function corresponding to the i node

\({{\alpha _1,\alpha _2 }}\) :

Curvilinear coordinates

\({{u_{0i}, v_{0i}}}\) and \({{w_{0i}}}\) :

Deflection of midsurface at ith node in \({{\alpha _1,\alpha _2 }}\) and z directions

\({{\theta _{1i}, \theta _{2i}}}\) :

Rotation of normal at ith node about \({{\alpha _2}}\) axis and \({{\alpha _1}}\) axis, respectively

\({{\varepsilon _{xx}^0, \varepsilon _{yy}^0 \, {\rm and} \, \gamma _{xy}^0}}\) :

In-plane strains of the midsurface in the Cartesian coordinate system

\({{k_{xx}, k_{yy} \, {\rm and} \, k_{xy}}}\) :

Bending strains (curvatures) of the midsurface in the Cartesian coordinates system

\({{A_{ij}, B_{ij}, D_{ij}}}\) and \({{A_{ij}^s}}\) :

Extensional, flexural-extensional coupling, bending and transverse shear stiffness, respectively

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Thostenson E.T., Ren Z.F., Chou T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  3. Dai H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)

    Article  Google Scholar 

  4. Fidelus J.D., Wiesel E., Gojny F.H., Schulte K., Wagner H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. Part A 36, 1555–1561 (2005)

    Article  Google Scholar 

  5. Han Y., Elliott J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  6. Zhu R., Pan E., Roy A.K.: Molecular dynamics study of the stress–strain behaviour of carbon-nanotube reinforced Epon 862 composites. Mater. Sci. Eng. A 447, 51–57 (2007)

    Article  Google Scholar 

  7. Odegard G.M., Gates T.S., Wise K.E., Park C., Siochi E.J.: Constitutive modelling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Article  Google Scholar 

  8. Shi D.-L., Feng X.-Q., Huang Y. Y., Hwang K.-C., Gao H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites. J. Eng. Mater. Technol. 126, 250–257 (2004)

    Article  Google Scholar 

  9. Wuite J., Adali S.: Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis. Compos. Struct. 71, 388–396 (2005)

    Article  Google Scholar 

  10. Shen H.S., Zhang C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Article  Google Scholar 

  11. Shen H.S.: Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  12. Shen H.S.: Postbuckling of nanotube–reinforced composite cylindrical shells in thermal environments, Part I: axially-loaded shells. Compos. Struct. 93, 2096–2108 (2011)

    Article  Google Scholar 

  13. Zhu P., Lei Z.X., Liew K.M.: Static and free vibration analyses of carbon nanotube–reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012)

    Article  Google Scholar 

  14. Yas M.H., Heshmati M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36, 1371–1394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aragh B.S., Barati A.H.N., Hedayati H.: Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. Part B 43, 1943–1954 (2012)

    Article  Google Scholar 

  16. Moradi-Dastjerdi R., Pourasghar A., Foroutan M., Bidram M.: Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method. J. Compos. Mater. 48, 1901–1913 (2014)

    Article  Google Scholar 

  17. Zhang L.W., Lei Z.X., Liew K.M., Yu J.L.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014)

    Article  Google Scholar 

  18. Liew K.M., Lei Z.X., Zhang L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zhang L.W., Lei Z.X., Liew K.M.: Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos. Struct. 122, 172–183 (2015)

    Article  Google Scholar 

  20. Zhang L.W., Lei Z.X., Liew K.M.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos. Struct. 120, 189–199 (2015)

    Article  Google Scholar 

  21. Zhang L.W., Lei Z.X., Liew K.M.: Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos. Part B 75, 36–46 (2015)

    Article  Google Scholar 

  22. Phung-Van P., Abdel-Wahab M., Liew K.M., Bordas S.P.A., Nguyen-Xuan H.: Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos. Struct. 123, 137–149 (2015)

    Article  Google Scholar 

  23. Alibeigloo A., Emtehani A.: Static and free vibration analyses of carbon nanotube reinforced composite plate using differential quadrature method. Meccanica 50, 61–76 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kundalwal S.I., Meguid S.A.: Effect of carbon nanotube waviness on active dam** of laminated hybrid composite shells. Acta Mech. 226, 2035–2052 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zeighampour H., Beni Y.T., Mehralian F.: A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. 226, 2607–2629 (2015)

    Article  MathSciNet  Google Scholar 

  26. Weng G.J.: Effective bulk moduli of two functionally graded composites. Acta Mech. 166, 57–67 (2003)

    Article  MATH  Google Scholar 

  27. Alian A.R., Kundalwal S.I., Meguid S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)

    Article  Google Scholar 

  28. Kumar R.S., Ray M.C.: Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1–3 piezoelectric composites. Compos. Struct. 105, 173–187 (2013)

    Article  Google Scholar 

  29. Kundalwal, S.I., Suresh Kumar, R., Ray, M.C.: Smart dam** of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites. Smart Mater. Struct. 22, 105001 (2013). doi:10.1088/0964-1726/22/10/105001

  30. Koiter W.T.: A consistent first approximation of the general theory of thin elastic shell. In: Proceedings of First IUTAM Symposium, North-Holland, Amsterdam, pp. 12–33 (1960)

  31. Sk L., Sinha P.K.: Improved finite element analysis of multilayered doubly curved composite shells. J. Reinf. Plast. Compos. 24, 385–404 (2005)

    Article  Google Scholar 

  32. Roy T., Manikandan P., Chakraborty D.: Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures. Finite Elem. Anal. Des. 46, 710–720 (2010)

    Article  Google Scholar 

  33. Wempner G., Talaslidis D.: Mechanics of Solids and Shells. CRC Press, Boca Raton, FL (2003)

    MATH  Google Scholar 

  34. Chowdhury, I., Dasgupta, S.P.: Computation of Rayleigh dam** coefficients for large systems. EJGE 8C, 1–11 (2003)

  35. Wang C.Y., Zhang L.C.: A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 19, 075075 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarapada Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, B., Roy, T. Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. Acta Mech 227, 581–599 (2016). https://doi.org/10.1007/s00707-015-1479-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1479-z

Keywords

Navigation