Log in

Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = −7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = −10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi A, Han D, Karamouz M, Remesan R (2009) Input data selection for solar radiation estimation. Hydrol Process 23:2754–2764

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome 300:6541

  • Black TL (1994) The new NMC mesoscale Eta model: description and forecast examples. Weather Forecast 9:265–278

    Article  Google Scholar 

  • Caldwell P, Chin H-NS, Bader DC, Bala G (2009) Evaluation of a WRF dynamical downscaling simulation over California. Clim Chang 95:499–521

    Article  Google Scholar 

  • Caylor KK, D’Odorico P, Rodriguez-Iturbe I (2006) On the ecohydrology of structurally heterogeneous semiarid landscapes. Water Resour Res 42:7424

    Google Scholar 

  • Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304

    Article  Google Scholar 

  • Conrad C, Dech SW, Hafeez M, Lamers J, Martius C, Strunz G (2007) Map** and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig Drain Syst 21:197–218

    Article  Google Scholar 

  • Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst 19:223–249

    Article  Google Scholar 

  • Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Cristóbal J, Anderson M (2013) Validation of a meteosat second generation solar radiation dataset over the northeastern Iberian Peninsula. Hydrol Earth Syst Sci 17:163–175

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42, W08419

    Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Ghilain N, Arboleda A, Gellens-Meulenberghs F (2011) Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol Earth Syst Sci 15:771–786

    Article  Google Scholar 

  • Gilliland EK, Rowe CM (2007) A comparison of cumulus parameterization schemes in the WRF model. In: Proceedings of the 87th AMS Annual Meeting & 21th Conference on Hydrology, San Antonio, TX, USA, p 2.16

  • Gupta M, Srivastava P, Islam T, Ishak A (2014) Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate. Environ Earth Sci 71:4421–4431. doi:10.1007/s12665-013-2837-6

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564

    Article  Google Scholar 

  • Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844

    Article  Google Scholar 

  • Ishak AM, Bray M, Remesan R, Han D (2010) Estimating reference evapotranspiration using numerical weather modelling. Hydrol Process 24:3490–3509

    Article  Google Scholar 

  • Ishak A, Remesan R, Srivastava P, Islam T, Han D (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manag 27:1–23. doi:10.1007/s11269-012-0130-1

    Article  Google Scholar 

  • Jackson TJ et al (2012) Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the US. Geosci Remote Sens IEEE Trans 50:1530–1543

    Article  Google Scholar 

  • Jang K et al (2010) Map** evapotranspiration using MODIS and MM5 four-dimensional data assimilation. Remote Sens Environ 114:657–673

    Article  Google Scholar 

  • Kalivas D, Petropoulos G, Athanasiou I, Kollias V (2013) An intercomparison of burnt area estimates derived from key operational products: the Greek wildland fires of 2005–2007. Nonlinear Process Geophys 20:397–409

    Article  Google Scholar 

  • Kashyap PS, Panda R (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric Water Manag 50:9–25

    Article  Google Scholar 

  • Kustas W, Norman J (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41:495–516

    Article  Google Scholar 

  • Mesinger F, Black TL (1992) On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteorog Atmos Phys 50:47–60

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663-16682

    Article  Google Scholar 

  • Monteith J (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Cambridge University Press, Cambridge, pp 205–234

    Google Scholar 

  • Morisette JT et al (2006) Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. Geosci Remote Sens, IEEE Trans on 44:1804–1817

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Novák V (2012) Methods of evapotranspiration estimation. Evapotranspiration in the Soil-Plant-Atmosphere System, Progress in Soil Science, XVI, p. 256, Springer Dordrecht

  • Penman H (1956) Estimating evaporation. Trans Am Geophys Union 37:43–50

    Article  Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20. doi:10.1016/j.agwat.2014.07.031

    Article  Google Scholar 

  • Petropoulos GP, Carlson TN, Griffiths H (2013) Turbulent fluxes of heat and moisture at the earth’s land surface: importance, controlling parameters and conventional measurement. Remote Sensing of Energy Fluxes and Soil Moisture Content. Taylor & Francis, Florida, USA. p 562

  • Petropoulos GP, Ireland G, Cass A, Srivastava PK (2015) Performance assessment of the SEVIRI evapotranspiration operational product: results over diverse mediterranean ecosystems. IEEE Sensors J. doi:10.1109/jsen.2015.2390031

  • Schwartz CS et al (2009) Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing. Mon Weather Rev 137:3351–3372

    Article  Google Scholar 

  • Sivapalan M (2006) Predictions in ungauged basins: promise and progress, vol 303. Press, IAHS

    Google Scholar 

  • Sivapalan M et al (2003) IAHS decade on predictions in ungauged basins (PUB), 2003–2012: sha** an exciting future for the hydrological sciences. Hydrol Sci J 48:857–880

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J (2001) Prototypes for the WRF (Weather Research and Forecasting) model. In Preprints, Ninth Conf. Mesoscale Processes, J11–J15, American Meteorological Society, Fort Lauderdale, Florida, USA

  • Srivastava PK (2013) Soil moisture estimation from SMOS Satellite and mesoscale model for hydrological applications. PhD thesis, University of Bristol, Bristol, UK

  • Srivastava P, Han D, Rico-Ramirez M, Al-Shrafany D, Islam T (2013a) Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour Manag 27:5069–5087. doi:10.1007/s11269-013-0452-7

    Google Scholar 

  • Srivastava PK, Han D, Ramirez MR, Islam T (2013b) Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol 498:292–304

    Article  Google Scholar 

  • Srivastava PK, Han D, Ramirez MR, Islam T (2013c) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manag 27:3127–3144. doi:10.1007/s11269-013-0337-9

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico Ramirez M, Islam T (2013d) Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process 28(15):4419–4432. doi:10.1002/hyp.9946

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013e) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model. Atmos Sci Lett 14:118–125

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131:73–84

    Article  Google Scholar 

  • Thakur JK, Srivastava PK, Singh SK, Vekerdy Z (2012) Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey. Regional Environ Change 12(1):133-144

  • Veersé F, Thepaut JN (1998) Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q J R Meteorol Soc 124:1889–1908

    Article  Google Scholar 

  • Wei H, **a Y, Mitchell KE, Ek MB (2013) Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation. Hydrol Process 27:297–303

    Article  Google Scholar 

  • Wetzel PJ, Chang J-T (1988) Evapotranspiration from nonuniform surfaces: a first approach for short-term numerical weather prediction. Mon Weather Rev 116:600–621

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Yoder R, Odhiambo L, Wright W (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Appl Eng Agric 21:197–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Commonwealth Scholarship Commission, British Council, UK and the Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors would like to acknowledge the British Atmospheric Data Centre, UK for providing the ground datasets. The author also acknowledges the Advanced Computing Research Centre at University of Bristol for providing the access to supercomputer facility (The Blue Crystal) for some of the analysis. Dr. Petropoulos’s contribution was supported by the European Commission Marie Curie Re-Integration Grant “TRANSFORM-EO” project. Authors would also like to thank Gareth Ireland for the language proof reading of the manuscript. The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA/NASA or the authors’ affiliated institutions. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P.K., Han, D., Islam, T. et al. Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets. Theor Appl Climatol 124, 461–473 (2016). https://doi.org/10.1007/s00704-015-1430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1430-1

Keywords

Navigation