Log in

A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with graphene quantum dots (GQDs) carrying silver nanoparticles. The modified GCE displays excellent performance in the electrochemical oxidation of guanine and adenine in showing lower anodic peak overpotentials (of 0.625 and 0.929 V, respectively) and increased anodic peak currents. The effective surface area of the modified GCE is about 21.5 times larger than that of the bare GCE. The electron transfer coefficient (α) and the electron transfer number (n) were calculated to be 2 and 0.60 for guanine, and 2 and 0.64 for adenine, respectively. Linear relationships between peak current and the concentrations were obtained in the range from 0.015 to 430 μM (for guanine) and 0.015 to 390 μM (for adenine). The detection limits are 10 nM and 12 nM (at a signal-to-noise ratio of 3), respectively. The modified GCE can well distinguish between guanine and adenine in mixed solutions, has fast response, a low detection limit, good reproducibility, and high stability.

A glassy carbon novel electrode modified with graphene quantum dots and silver nanoparticles was prepared. The modified electrode displays excellent performance in the electrochemical oxidation of guanine and adenine with fast response, a low detection limit, good reproducibility and stability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  2. Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857

    Article  CAS  Google Scholar 

  3. Zhang Y, Wu CY, Zhou XJ, Wu XC, Yang YQ, Wu HX, Guo SW, Zhang JY (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5:1816–1819

    Article  CAS  Google Scholar 

  4. Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  CAS  Google Scholar 

  5. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  6. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

  7. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  Google Scholar 

  8. Cheng HH, Zhao Y, Fan YQ, **e XJ, Qu LT, Shi GQ (2012) Graphene quantum dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 6:2237–2244

    Article  CAS  Google Scholar 

  9. Tang LB, Ji RB, Cao XK, Lin JY, Jiang HX, Li XM, Teng KS, Luk CM, Zeng SJ, Hao JH, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  Google Scholar 

  10. Zhao J, Chen GF, Zhu L, Li GX (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33

    Article  CAS  Google Scholar 

  11. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  12. Mao SX, Li WF, Long YM, Tu YF, Deng AP (2012) Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode. Anal Chim Acta 738:35–40

    Article  CAS  Google Scholar 

  13. Rounaghi G, kakhki RM, Azizi-toupkanloo H (2012) Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mater Sci Eng C 32:172–177

    Article  CAS  Google Scholar 

  14. Wang WP, Zhou L, Wang SM, Luo Z, Hu ZD (2008) Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection. Talanta 74:1050–1055

    Article  CAS  Google Scholar 

  15. Zen JM, Chang MR, Ilangovan G (1999) Simultaneous determination of guanine and adenine contents in DNA, RNA and synthetic oligonucleotides using a chemically modified electrode. Analyst 124:679–684

    Article  CAS  Google Scholar 

  16. Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured cordyceps using ultra- performance liquid chromatography. Talanta 73:269–273

    Article  CAS  Google Scholar 

  17. **ao F, Zhao FQ, Li JW, Liu LQ, Zeng BZ (2008) Characterization of hydrophobic ionic liquid-carbon nanotubes-gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine. Electrochim Acta 53:7781–7788

    Article  CAS  Google Scholar 

  18. Liu T, Zhu XB, Cui L, Ju P, Qu XJ, Ai SY (2011) Simultaneous determination of adenine and guanine utilizing PbO2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. J Electroanal Chem 651:216–221

    Article  CAS  Google Scholar 

  19. Liu HY, Wang GF, Chen DL, Zhang W, Li CJ, Fang B (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensor Actuat B 128:414–421

    Article  CAS  Google Scholar 

  20. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, **ong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloid Surf B-Biointerfaces 82:543–549

    Article  CAS  Google Scholar 

  21. Marmur J, Rownd R, Schildkraut CL (1963) Progress in nucleic acid research. Academic, New York

    Google Scholar 

  22. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  23. Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York

    Google Scholar 

  24. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  25. Sun W, Li YZ, Duan YY, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24:988–993

    Article  CAS  Google Scholar 

  26. Zou LN, Li YM, Ye BX (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2] arene[2]triazine Langmuir-Blodgett film. Microchim Acta 173:285–291

    Article  CAS  Google Scholar 

  27. Wei YL, Luo LQ, Ding YP, Liu X, Chu YL (2013) A glassy carbon electrode modified with poly(eriochrome black T) for sensitive determination of adenine and guanine. Microchim Acta 180:887–893

    Article  CAS  Google Scholar 

  28. Davision N (1972) The Biochemistry of the Nucleic Acids, 7th edn. Cox & Nyman, Norfolk

    Google Scholar 

Download references

Acknowledgments

This work was supported by the HongLiu Natural Science Foundation of Lanzhou University of Technology and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Shi, G., Chen, X. et al. A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182, 315–322 (2015). https://doi.org/10.1007/s00604-014-1335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1335-1

Keywords

Navigation