Log in

Description of the larval and adult hindgut tract of the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Decapoda, Malacostraca)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Arthropods are the most diversified animals on Earth. The morphology of the digestive system has been widely studied in insects; however, crustaceans have received comparatively little attention. This study describes the hindgut tract of the common spider crab Maja brachydactyla Balss, 1922, in larvae and adults using dissection, light and electron microscopical analyses. The hindgut tract maintains a similar general shape in larvae and adults. Major differences among stages are found in the morphology of epithelial cells and microspines, the thickness of the cuticle and connective-like tissue, and the presence of rosette glands (only in adults). Here, we provide the description of the sub-cellular structure of the folds, epithelium (conformed by tendon cells), musculature, and microspines of the hindgut of larvae and adults of M. brachydactyla. The morphological features of the hindgut of M. brachydactyla are compared with those of other arthropods (Insecta, Myriapoda and Arachnida). Our results suggest that the morphology of the hindgut is associated mainly with transport of faeces. In adults, the hindgut may also exert an osmoregulatory function, as described in other arthropods. At difference from holometabolous insets, the hindgut of M. brachydactyla (Decapoda) does not undergo a true metamorphic change during development, but major changes observed between larval and adult stages might respond to the different body size between life stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abelló P, García Raso JE, Guerao G, Salmerón F (2014) Maja brachydactyla (Brachyura: Majidae) in the western Mediterranean. Mar Biodivers Rec 7:

  • Abrunhosa FA, Kittaka J (1997) Morphological changes in the midgut, midgut gland and hindgut during the larval and postlarval development of the red king crab Paralithodes camtschaticus. Fish Sci 63:746–754

    Article  CAS  Google Scholar 

  • Alexander CG (1989) Tegumental glands in the paragnaths of Palaemon serratus (Crustacea: Natantia). J Mar Biol Assoc U K 69:53–63

    Article  Google Scholar 

  • Allardyce BJ, Linton SM (2010) Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs. J Morphol 271:61–72

    Article  PubMed  Google Scholar 

  • Andrés M, Estévez A, Anger K, Rotllant G (2008) Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). J Exp Mar Biol Ecol 357:35–40

    Article  Google Scholar 

  • Andrés M, Estévez A, Rotllant G (2007) Growth, survival and biochemical composition of spider crab Maja brachydactyla (Balss, 1922) (Decapoda: Majidae) larvae reared under different stocking densities, prey:larva ratios and diets. Aquaculture 273:494–502

    Article  Google Scholar 

  • Andrés M, Estévez A, Simeó CG, Rotllant G (2010) Annual variation in the biochemical composition of newly hatched larvae of Maja brachydactyla in captivity. Aquaculture 310:99–105

    Article  Google Scholar 

  • Areekul S (1957) The comparative internal larval anatomy of several genera of Scarabaeidae (Coleoptera)1. Ann Entomol Soc Am 50:562–577

    Article  Google Scholar 

  • Barker PL, Gibson R (1977) Observations on the feeding mechanism, structure of the gut, and digestive physiology of the european lobster Homarus gammarus (L.) (Decapoda: Nephropidae). J Exp Mar Biol Ecol 26:297–324

    Article  Google Scholar 

  • Barker PL, Gibson R (1978) Observations on the structure of the mouthparts, histology of the alimentary tract, and digestive physiology of the mud crab Scylla serrata (Forskål) (Decapoda: Portunidae). J Exp Mar Biol Ecol 32:177–196

    Article  CAS  Google Scholar 

  • Beadle DJ (1973) Muscle attachment in the tick, Boophilus decoloratus Koch (Acarina : Ixodidae). Int J Insect Morphol Embryol 2:247–255

    Article  Google Scholar 

  • Bitsch C, Bitsch J (2002) The endoskeletal structures in arthropods: cytology, morphology and evolution. Arthropod Struct Dev 30:159–177

    Article  PubMed  Google Scholar 

  • Bogataj U, Praznik M, Mrak P, Štrus J, Tušek-Žnidarič M, Žnidaršič N (2018) Comparative ultrastructure of cells and cuticle in the anterior chamber and papillate region of Porcellio scaber (Crustacea, Isopoda) hindgut. ZooKeys 427

  • Byers JR, Bond EF (1971) Surface specializations of the hindgut cuticle of lepidopterous larvae. Can J Zool 49:867–876

    Article  Google Scholar 

  • Castejón D, Alba-Tercedor J, Rotllant G, Ribes E, Durfort M, Guerao G (2018) Micro-computed tomography and histology to explore internal morphology in decapod larvae. Sci Rep 8:14399

    Article  PubMed  Google Scholar 

  • Castejón D, Rotllant G, Alba-Tercedor J, Font-i-Furnols M, Ribes E, Durfort M, Guerao G (2019a) Morphology and ultrastructure of the midgut gland (“hepatopancreas”) during ontogeny in the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Majidae). Arthropod Struct Dev 49:137–151

    Article  PubMed  Google Scholar 

  • Castejón D, Rotllant G, Giménez L, Torres G, Guerao G (2018b) Influence of temperature and light regime on the larval development of the common spider crab Maja brachydactyla Balss, 1922 (Brachyura: Majidae). Aquac Res 49:3548–3558

    Article  Google Scholar 

  • Castejón D, Rotllant G, Guerao G (2019b) Factors influencing successful settlement and metamorphosis of the common spider crab Maja brachydactyla Balss, 1922 (Brachyura: Majidae): Impacts of larval density, adult exudates and different substrates. Aquaculture 501:374–381

    Article  Google Scholar 

  • Castejón D, Rotllant G, Ribes E, Durfort M, Guerao G (2015) Foregut morphology and ontogeny of the spider crab Maja brachydactyla (Brachyura, Majoidea, Majidae). J Morphol 276:1109–1122

    Article  PubMed  Google Scholar 

  • Castejón D, Rotllant G, Ribes E, Durfort M, Guerao G (2018c) Morphology and ultrastructure of the esophagus during the ontogeny of the spider crab Maja brachydactyla (Decapoda, Brachyura, Majidae). J Morphol 279:710–723

    Article  PubMed  Google Scholar 

  • Castejón D, Rotllant G, Ribes E, Durfort M, Guerao G (2019c) Structure of the stomach cuticle in adult and larvae of the spider crab Maja brachydactyla (Brachyura, Decapoda). J Morphol 280:370–380

    Article  PubMed  Google Scholar 

  • Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosenberg J, van der Drift C (1997) Bacteria in the intestinal tract of different species of arthropods. Microb Ecol 33:189–197

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi HJ (1989) Anatomy and physiology of digestive tract of Crustaceans Decapods reared in aquaculture. Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, vol 9. Actes de colloques Ifremer, Tahiti, French Polynesia, pp 243–259

  • Chisaka H, Ueno M, Futaesaku Y (1999) Spines in the hindgut of the crayfish Procambarus clarkii (Decapoda): their distribution and correlation with hindgut muscles. J Crust Biol 19:337–343

    Article  Google Scholar 

  • Coleman CO (1991) Comparative fore-gut morphology of Antarctic Amphipoda (Crustacea) adapted to different food sources. Hydrobiologia 223:1–9

    Article  Google Scholar 

  • Coleman CO (1992) Foregut morphology of amphipoda (crustacea). An example of its relevance for systematics. Ophelia 36:135–150

    Article  Google Scholar 

  • Coleman CO (1994) Comparative anatomy of the alimentary canal of hyperiid amphipods. J Crust Biol 14:346–370

    Article  Google Scholar 

  • Corgos A, Bernárdez C, Sampedro P, Verísimo P, Freire J (2011) Spatial structure of the spider crab, Maja brachydactyla population: evidence of metapopulation structure. J Sea Res 66:9–19

    Article  Google Scholar 

  • Dapples CC, Lea AO (1974) Inner surface morphology of the alimentary canal in Aedes aegypti (L.) (diptera: culicidae). Int J Insect Morphol Embryol 3:433–442. https://www.sciencedirect.com/science/article/abs/pii/002073227490035X

  • Davie PJF, Guinot D, Ng PKL (2015) Anatomy and functional morphology of Brachyura. In: Castro P, Davie PJF, Guinot D, Schram F, Von Vaupel Klein C (eds) Treatise on Zoology - Anatomy Taxonomy Biology. The Crustacea Volume 9 Part C. Brill, pp 11–163

  • De Jong L, Casanova B (1997) Comparative morphology of the foregut of three Eucopia species (Crustacea, Mysidacea, Lophogastrida). J Nat Hist 31:389–402. https://www.tandfonline.com/doi/abs/10.1080/00222939700770191

  • Dewel RA, Dewel WC (1979) Studies on the tardigrades. IV. Fine structure of the hindgut of Milnesium tardigradum doyère. J Morphol 161:79–109

    Article  PubMed  Google Scholar 

  • Diaz E, Cisneros R, ZuñIga G, Uria-Galicia E (1998) Comparative anatomical and histological study of the alimentary canal of Dendroctonus parallelocollis, D. rhizophagus, and D. valens (Coleoptera: Scolytidae). Ann Entomol Soc Am 91:479–487

    Article  Google Scholar 

  • Dillaman RM, Roer R, Shafer T, Modla S (2013) The crustacean integument: structure and function. In: Watling L, Thiel M (eds) The Natural History of the Crustacea, vol. 1. Functional Morphology and Diversity, vol Volume 1. Oxford University Press, pp 140–165

  • Doughtie DG, Rao KR (1982) Rosette glands in the gills of the grass shrimp, Palaemonetes pugio. I. Comparative morphology, cyclical activity, and innervation. J Morphol 171:41–67

    Article  PubMed  Google Scholar 

  • Dworschak PC (1998) The role of tegumental glands in burrow construction of two Mediterranean callianassid shrimp. Senckenb Marit 28:143–149

    Article  Google Scholar 

  • Elzinga RJ (1996) A comparative study of microspines in the alimentary canal of five families of Orthoptera (Saltatoria). Int J Insect Morphol Embryol 25:249–260. https://www.sciencedirect.com/science/article/abs/pii/0020732296000074

  • Elzinga RJ (1998) Microspines in the alimentary canal of arthropoda, onychophora, annelida. Int J Insect Morphol Embryol 27:341–349

    Article  Google Scholar 

  • Elzinga RJ, Hopkins TL (1994) Foregut microspines in four families of cockroaches (Blattaria). Int J Insect Morphol Embryol 23:253–260. https://www.sciencedirect.com/science/article/abs/pii/0020732294900221

  • Elzinga RJ, Hopkins TL (1995) Microspine variation in hindgut regions of four families of cockroaches (Blattaria). Int J Insect Morphol Embryol 24:203–211

    Article  Google Scholar 

  • Erri Babu D, Shyamasundari K, Hanumantha Rao K (1979) The structure and histochemistry of the oesophageal glands in the crab Menippe rumphii (Frabricius) (Crustacea : Brachyura). Proc Anim Sci 88:277–285

    Article  Google Scholar 

  • Erri Babu D, Shyamasundari K, Rao KH (1982) Studies on the digestive system of the crab Menippe rumphii (Fabricius) (Crustacea:Brachyura). J Exp Mar Biol Ecol 58:175–191

    Article  Google Scholar 

  • Factor JR (1981) Development and metamorphosis of the digestive system of larval lobsters, Homarus americanus (Decapoda: Nephropidae). J Morphol 169:225–242

    Article  PubMed  Google Scholar 

  • Felder DL, Felgenhauer BE (1993) Morphology of the midgut–hindgut juncture in the ghost shrimp Lepidophthalmus louisianensis (Schmitt) (Crustacea: Decapoda: Thalassinidea). Acta Zool 74:263–276

    Article  Google Scholar 

  • Felgenhauer BE (1992) Chapter 3. Internal anatomy of the Decapoda: an overview. In: Harrison FW, Humes AG (eds) Microscopic Anatomy of Invertebrates. Volume 10: Decapod Crustacea, vol 10, Decapod Crustacea. Wiley-Liss, Inc., pp 45–75

  • Forsythe TG (1982) Feeding mechanisms of certain ground beetles (Coleoptera: Carabidae). Coleopt Bull 26–73

  • Freire J, Bernárdez C, Corgos A, Fernández L, González-Gurriarán E, Sampedro MP, Verísimo P (2002) Management strategies for sustainable invertebrate fisheries in coastal ecosystems of Galicia (NW Spain). Aquat Ecol 36:41–50

    Article  Google Scholar 

  • Friesen JA, Mann KH, Willison JHM (1986) Gross anatomy and fine structure of the gut of the marine mysid shrimp Mysis stenolepis Smith. Can J Zool 64:431–441. https://cdnsciencepub.com/doi/10.1139/z86-067

  • Gonçalves WG, Fernandes KM, Santana WC, Martins GF, Zanuncio JC, Serrão JE (2017) Post-embryonic changes in the hindgut of honeybee Apis mellifera workers: morphology, cuticle deposition, apoptosis, and cell proliferation. Dev Biol 431:194–204

    Article  PubMed  Google Scholar 

  • González-Gurriarán E, Fernández L, Freire J, Muiño R, Parapar J (1993) Reproduction of the spider crab Maja squinado (Brachyura: Majidae) in the southern Galician coast (NW Spain). International Council for the Exploration of the Sea. Shellfish Committe ICES C.M. 1993/K:19

  • González-Gurriarán E, Freire J, Parapar J, Sampedro MP, Urcera M (1995) Growth at moult and moulting seasonality of the spider crab, Maja squinado (Herbst) (Decapoda: Majidae) in experimental conditions: implications for juvenile life history. J Exp Mar Biol Ecol 189:183–203

    Article  Google Scholar 

  • Green TL (1933) Some aspects of the metamorphosis of the alimentary system in the wasp, Vespa vulgaris (Hymenoptera). Proc Zool Soc London 103:629–644

    Article  Google Scholar 

  • Guerao G, Pastor E, Martin J, Andrés M, Estévez A, Grau A, Duran J, Rotllant G (2008) The larval development of Maja squinado and M. brachydactyla (Decapoda, Brachyura, Majidae) described from plankton collected and laboratory-reared material. J Nat Hist 42:2257–2276

    Article  Google Scholar 

  • Guerao G, Rotllant G (2010) Development and growth of the early juveniles of the spider crab Maja squinado (Brachyura: Majoidea) in an individual culture system. Aquaculture 307:105–110

    Article  Google Scholar 

  • Guerao G, Rotllant G, Anger K (2010) Characterization of larval moulting cycles in Maja brachydactyla (Brachyura, Majidae) reared in the laboratory. Aquaculture 302:106–111

    Article  Google Scholar 

  • Günzl H (1991) The ultrastructure of the posterior gut and caecum in Alona affinis (Crustacea, Cladocera). Zoomorphology 110:139–144

    Article  Google Scholar 

  • Harris J (1993a) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231

    Article  CAS  PubMed  Google Scholar 

  • Harris JM (1993b) Widespread occurrence of extensive epimural rod bacteria in the hindguts of marine Thalassinidae and Brachyura (Crustacea: Decapoda). Mar Biol 116:615–629

    Article  Google Scholar 

  • Heeren T, Mitchell BD (1997) Morphology of the mouthparts, gastric mill and digestive tract of the giant crab, Pseudocarcinus gigas (Milne Edwards) (Decapoda: Oziidae). Mar Freshw Res 48:7–18

    Article  Google Scholar 

  • Herrera-Alvarez L, Fernández I, Benito J, Pardos F (2000) Ultrastructure of the midgut and hindgut of Derocheilocaris remanei (Crustacea, Mystacocarida). J Morphol 244:177–189

    Article  CAS  PubMed  Google Scholar 

  • Hinton DJ, Corey S (1979) The mouthparts and digestive tract in the larval stages of Homarus americanus. Can J Zool 57:1413–1423

    Article  Google Scholar 

  • Hochuli DF, Roberts B, Sanson GD (1992) Anteriorly directed microspines in the foregut of Locusta migratoria (Orthoptera : Acrididae). Int J Insect Morphol Embryol 21:95–97. https://www.sciencedirect.com/science/article/abs/pii/002073229290008B

  • Holdich DM, Mayes KR (1975) A fine-structural re-examination of the so-called ‘midgut’ of the isopod Porcellio. Crustaceana 29:186–192

    Article  Google Scholar 

  • Holdich DM, Ratcliffe NA (1970) A light and electron microscope study of the hindgut of the herbivorous isopod, Dynamene bidentata (Crustacea: Peracarida). Z Zellforsch Mikrosk Anat 111:209–227

    Article  CAS  PubMed  Google Scholar 

  • Hopkin SP, Nott JA (1980) Studies on the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the b cells in the hepatopancreas. J Mar Biol Assoc UK 60:891–907

    Article  Google Scholar 

  • Hoyoux C, Zbinden M, Samadi S, Gaill F, Compère P (2009) Wood-based diet and gut microflora of a galatheid crab associated with Pacific deep-sea wood falls. Mar Biol 156:2421–2439. https://springer.longhoe.net/article/10.1007/s00227-009-1266-2

  • Icely JD, Nott JA (1984) On the morphology and fine structure of the alimentary canal of Corophium volutator (Pallas) (Crustacea: Amphipoda). Philos Trans R Soc Lond B Biol Sci 306:49–78. https://royalsocietypublishing.org/doi/10.1098/rstb.1984.0081

  • Icely JD, Nott JA (1992) Chapter 6. Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic Anatomy of Invertebrates. Volume 10: Decapod Crustacea, vol 10, Decapod Crustacea. Wiley-Liss, Inc., pp 45–75

  • Jantrarotai PN, Sawanyatiputi SA (2005) Histological study on the development of digestive system in zoeal stages of mud crab (Scylla olivacea). Kasetsart J 39:666–671

    Google Scholar 

  • Jones JC (1960) The anatomy and rhythmical activities of the alimentary canal of Anopheles larvae. Ann Entomol Soc Am 53:459–474

    Article  Google Scholar 

  • Johnston DJ, Alexander CG (1999) Functional morphology of the mouthparts and alimentary tract of the slipper lobster Thenus orientalis (Decapoda : Scyllaridae). Mar Freshw Res 50:213–223. https://www.publish.csiro.au/mf/MF98089

  • Johnston M, Johnston D, Knott B (2008) Ontogenetic changes in the structure and function of the mouthparts and foregut of early and late stage Panulirus ornatus (Fabricius, 1798) phyllosomata (Decapoda: Palinuridae). J Crust Biol 28:46–56. https://academic.oup.com/jcb/article/28/1/46/2548279

  • Johnston MD, Johnston DJ, Richardson AMM (2004) Mouthpart and digestive tract structure in four talitrid amphipods from a translittoral series in Tasmania. J Mar Biolog Assoc UK 84:717–726. https://doi.org/10.1017/S0025315404009804h

  • Judy KJ, Gilbert LI (1969) Morphology of the alimentary canal during the metamorphosis of Hyalophora cecropia (Lepidoptera: Saturniidae)1. Ann Entomol Soc Am 62:1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Klann AE, Alberti G (2010) Histological and ultrastructural characterization of the alimentary system of solifuges (Arachnida, Solifugae). J Morphol 271:225–243

    CAS  PubMed  Google Scholar 

  • Klowden MJ (2013) Chapter 6 - metabolic systems. Physiological Systems in Insects, Third Edition. Academic Press, San Diego, pp 305–364

    Chapter  Google Scholar 

  • Komuro T, Yamamoto T (1968) Fine structure of the epithelium of the gut in the crayfish (Procambarus clarkii) with special reference to the cytoplasmic microtutubles. Arch Histol Jpn 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Lovett DL, Felder DL (1989) Ontogeny of gut morphology in the white shrimp Penaeus setiferus (Decapoda, Penaeidae). J Morphol 201:253–272

    Article  PubMed  Google Scholar 

  • Mall SB (1980) Histomorphology of the alimentary canal and associated glands of the mature larva of Marasmia trapezalis Guen. (Pyralidae: Lepidoptera). J Nat Hist 14:97–110

    Article  Google Scholar 

  • Martin JW, Olesen J, Høeg JT (2014) Atlas of Crustacean Larvae. Johns Hopkins University Press, Baltimore

    Book  Google Scholar 

  • Mathieson BRF, Lehane MJ (2002) Ultrastructure of the alimentary canal of the sheep scab mite, Psoroptes ovis (Acari: Psoroptidae). Vet Parasitol 104:151–166

    Article  CAS  PubMed  Google Scholar 

  • Mathur LML (1973) Histology of the alimentary canal of the mature larva of Prodenia litura Fabr. (Lepidoptera). J Nat Hist 7:653–664

    Article  Google Scholar 

  • Maxwell DE (1955) The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Memoirs of the Entomological Society of Canada 87:5–132

    Article  Google Scholar 

  • McLaughlin PA (1983) 1. Internal anatomy. In: Mantel LH (ed) The Biology of Crustacea Vol. 5. Internal Anatomy and Physiological Regulation, vol Vol. 5. Academic Press, pp 1–52

  • Metillo EB, Ritz DA (1994) Comparative foregut functional morphology of three co-occurring mysids (Crustacea: Mysidacea) from south-eastern Tasmania. JMBA-J Mar Biol Assoc UK 74:323–336

    Article  Google Scholar 

  • Mikami S, Greenwood JG, Takashima F (1994) Functional morphology and cytology of the phyllosomal digestive system of Ibacus ciliatus and Panulirus japonicus (Decapoda, Scyllaridae and Palinuridae). Crustaceana 67:212–225

    Article  Google Scholar 

  • Miyoshi AR, Gabriel VA, Fantazzini ER, Fontanetti CS (2005) Microspines in the pylorus of Pseudonannolene tricolor and Rhinocricus padbergi (Arthropoda, Diplopoda). Iheringia Série Zoologia 95:183–187

    Article  Google Scholar 

  • Moon YW, Kim HH (1999) Morphological study of the digestive tract of the mud crab (Hemigrapsus penicillatus De Haan) and the symbiotic crab (Pinnotheres cyclinus Shen). Korean J Biol Sci 3:407–412

    Article  Google Scholar 

  • Mykles DL (1979) Ultrastructure of alimentary epithelia of lobsters, Homarus americanus and H. gammarus, and crab. Cancer Magister Zoomorphologie 92:201–215

    Article  Google Scholar 

  • Nakazawa E, Katoh K, Ishikawa H (1992) The association of microtubules with the plasmalemma in epidermal tendon cells of the river crab. Biol Cell 75:111–119

    Article  Google Scholar 

  • Nardi JB, Bee CM, Miller LA, Nguyen NH, Suh S-O, Blackwell M (2006) Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod Struct Dev 35:57–68

    Article  PubMed  Google Scholar 

  • Nardi JB, Bee CM, Miller LA, Taylor SJ (2009) Distinctive features of the alimentary canal of a fungus-feeding hemipteran, Mezira granulata (Heteroptera: Aradidae). Arthropod Struct Dev 38:206–215

    Article  PubMed  Google Scholar 

  • Nardi JB, Bee CM, Taylor SJ (2016) Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod Struct Dev 45:462–474

    Article  PubMed  Google Scholar 

  • ØDegaard F, (2000) How many species of arthropods? Erwin’s estimate revised. Biol J Lin Soc 71:583–597

    Article  Google Scholar 

  • Pazos G, Fernández J, Linares F, Sánchez J, Otero JJ, Iglesias J, Domingues P (2018) The complete life cycle in captivity of the spider crab, Maja brachydactyla, Herbst 1788. Aquac Res 0:

  • Phillips JE, Hanrahan J, Chamberlin M, Thomson B (1987) Mechanisms and control of reabsorption in insect hindgut. In: Evans PD, Wigglesworth VB (eds) Advances in Insect Physiology, vol 19. Academic Press, pp 329–422

  • Pillai RS (1960) Studies on the shrimp Caridina laevis (Heller) 1. The Digestive System. J Mar Biol Ass India 2:57–74. http://mbai.org.in/uploads1/manuscripts/Article%202%20(172-176)330539914.pdf

  • Pinn EH, Nickell LA, Rogerson A, Atkinson RJA (1999) Comparison of gut morphology and gut microflora of seven species of mud shrimp (Crustacea: Decapoda: Thalassinidea). Mar Biol 133:103–114. https://springer.longhoe.net/article/10.1007/s002270050448

  • Potts SF (1927) The alimentary canal of the Mexican bean beetle. Ohio J Sci 27:127–137

    Google Scholar 

  • Pugh JE (1962) A contribution toward a knowledge of the hind-gut of fiddler crabs (Decapoda, Grapsidae). Trans Am Microsc Soc 81:309–320

    Article  Google Scholar 

  • Reddy AR (1937) The physiology of digestion and absorption in the crab Paratelphusa (Oziotelphusa) hydrodromus (Herbst). Proc Indiana Acad Sci - Section B 6:170–193

    Article  Google Scholar 

  • Reedy MC, Beall C (1993) Ultrastructure of develo** flight muscle in Drosophila. II. Formation of the myotendon junction. Dev Biol 160:466–479

    Article  CAS  PubMed  Google Scholar 

  • Richins CA (1938) The metamorphosis of the digestive tract of Aedes dorsalis Meigen. Ann Entomol Soc Am 31:69–73

    Article  Google Scholar 

  • Rowland IJ, Goodman WG (2016) Magnetic resonance imaging of alimentary tract development in Manduca sexta. PLoS ONE 11:e0157124

    Article  PubMed  Google Scholar 

  • Santos HP, Rost-Roszkowska M, Vilimova J, Serrão JE (2017) Ultrastructure of the midgut in Heteroptera (Hemiptera) with different feeding habits. Protoplasma 254:1743–1753

    Article  PubMed  Google Scholar 

  • Schlegel C (1911) Anatomie sommaire de la première zoé de Maja squinado Latr. (Note préliminaire à des recherches sur l'Organogénese des Décapodes brachyoures). Archives de Zoologie Experimentale et Générale 5º Série T. VIII.:29–40

  • Schmitz EH, Scherrey PM (1983) Digestive anatomy Hyalella azteca (Crustacea, Amphipoda). J Morphol 175:91–100

    Article  PubMed  Google Scholar 

  • Schultz TW, Kennedy JR (1976) The fine structure of the digestive system of Daphnia pulex (Crustacea: Cladocera). Tissue Cell 8:479–490

    Article  CAS  PubMed  Google Scholar 

  • Shelomi M, Sitepu IR, Boundy-Mills KL, Kimsey LS (2015) Review of the gross anatomy and microbiology of the phasmatodea digestive tract. J Orthop Res 24(29–40):12

    Google Scholar 

  • Schlüter U (1980) Ultrastruktur der Pyloruszähnchen zweier Tausendfüßler (Tachypodoiulus niger, Polydesmus angustus)*. Acta Zool 61:171–178. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1463-6395.1980.tb01305.x

  • Simeó CG, Andrés M, Estévez A, Rotllant G (2015) The effect of male absence on the larval production of the spider crab Maja brachydactyla Balss, 1922. Aquac Res 46:937–944

    Article  Google Scholar 

  • Smit W, Akster H (1974) Bridges between microtubules and desmosomes in the terminal filament-cuticle connection and in the muscle-cuticle connection (tendon cell) of the Colorado beetle (Leptinotarsa decemlineata Say). Netherlands J Zool 25:122–124

    Article  Google Scholar 

  • Smith D, Järlfors U, Russell F (1969) The fine structure of muscle attachments in a spider (Latrodectus mactans, Fabr.). Tissue Cell 1:673–687

    Article  CAS  PubMed  Google Scholar 

  • Storch V, Strus J, Brandt A (2002) Microscopic anatomy and ultrastructure of the digestive system of Natatolana obtusata (Vanhöffen, 1914) (Crustacea, Isopoda). Acta Zool 83:1–14. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1463-6395.2002.00093

  • Stork NE, McBroom J, Gely C, Hamilton AJ (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci 112:7519–7523

    Article  CAS  PubMed  Google Scholar 

  • Talarico G, Lipke E, Alberti G (2011) Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. J Morphol 272:89–117

    Article  PubMed  Google Scholar 

  • Talbot P, Al-Hajj H, Demers D, Howard D (1991) Distribution of microfilaments and microtubules in Homarus pleopod tegumental glands (Crustacea, Decapoda). Zoomorphology 110:329–338

    Article  Google Scholar 

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  • Terra WR, Ferreira C (2020) Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Struct Dev 56:100931

    Article  PubMed  Google Scholar 

  • To TH, Brenner TL, Cavey MJ, Wilkens JL (2004) Histological organization of the intestine in the crayfish Procambarus clarkii. Acta Zool 85:119–130

    Article  Google Scholar 

  • Trinadha Babu B, Shyamasundari K, Hanumantha Rao K (1989) Observations on the morphology and histology of the foregut of Portunus sanguinolentus (Crustacea: Brachyura). Folia Morphol 37:364–372

    CAS  Google Scholar 

  • Tziouveli V, Bastos-Gomez G, Bellwood O (2011) Functional morphology of mouthparts and digestive system during larval development of the cleaner shrimp Lysmata amboinensis (de Man, 1888). J Morphol 272:1080–1091

    Article  PubMed  Google Scholar 

  • Vernon GM, Herold L, Witkus ER (1974) Fine structure of the digestive tract epithelium in the terrestrial isopod Armadillidium vulgare. J Morphol 144:337–359

    Article  CAS  PubMed  Google Scholar 

  • Wägele J-W, Welsch U, Müller W (1981) Fine structure and function of the digestive tract of Cyathura carinata (Krøyer) (Crustacea, Isopoda). Zoomorphology 98:69–88

    Article  Google Scholar 

  • Watling L (2013) Feeding and digestive system. In: Watling L, Thiel M (eds) The Natural History of Crustacea, vol 1. Oxford University Press, Functional Morphology and Diversity, pp 237–260

    Google Scholar 

  • Wigglesworth VB (1972) Digestion and nutrition. The Principles of Insect Physiology. Springer, Netherlands, Dordrecht, pp 476–552

    Google Scholar 

  • Williams RL (1944) The pre-zoea stage of Porcellana platycheles (Pennant). Preliminary anatomical and histological notes. J R Microsc Soc 64:1–15

    Article  Google Scholar 

  • Wirkner CS, Richter S (2013) Circulatory system and respiration. Natural History of Crustacea 1:376–412

    Google Scholar 

  • Witkus ER, Grillo RS, Smith WJ (1969) Microtubule bundles in the hindgut epithelium of the woodlouse Oniscus ascellus. J Ultrastruct Res 29:182–190

    Article  CAS  PubMed  Google Scholar 

  • Woods WC (1918) The alimentary canal of the larva of Altica bimarginata Say (Coleoptera)*. Ann Entomol Soc Am 11:283–313

    Article  Google Scholar 

  • Yoshikoshi K (1975) On the structure and function of the alimentary canal of Tigriopus japonicus (Copepoda; Harpacticoida)-I Histological structure. Nippon Suisan Gakkaishi 41:929–935

    Article  Google Scholar 

  • Žnidaršič N, Mrak P, Tušek-Žnidarič M, Štrus J (2012) Exoskeleton anchoring to tendon cells and muscles in molting isopod crustaceans. ZooKeys 39

Download references

Acknowledgements

The authors would like to thank to the technicians at IRTA, Sant Carles de la Ràpita (David Carmona, Glòria Macià, Magda Monllaó, Francesc X. Ingla and Olga Bellot) and CCiTUB Hospital Clinic, Barcelona (Adriana Martínez, Almudena García, José Manuel Rebled and Rosa Rivera) for their assistance.

Funding

G.G. INIA Project (grant number RTA2011-00004-00-00) funded by Ministerio de Economía y Competitividad (Spanish Ministry of Economy and Competitiveness). D.C. FPI-INIA fellowship (INIA Project RTA2011-00004-00-00) funded by Ministerio de Economía y Competitividad (Spanish Ministry of Economy and Competitiveness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Castejón.

Ethics declarations

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castejón, D., Rotllant, G., Ribes, E. et al. Description of the larval and adult hindgut tract of the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Decapoda, Malacostraca). Cell Tissue Res 384, 703–720 (2021). https://doi.org/10.1007/s00441-021-03446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03446-3

Keywords

Navigation