Log in

The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 project

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO’s eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models’ biases in the BSISO simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 2726–2748.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global oceanatmosphereland system model, spectral version 2: FGOALSs2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian Oscillation. J. Climate, 25, 4914–4931.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382.

    Article  Google Scholar 

  • Jia, X. L., C. Y. Li, N. F. Zhou, and J. Ling, 2009: The MJO in an AGCM with three different cumulus parameterization schemes. Dyn. Atmos. Oceans, 49, 141–163.

    Article  Google Scholar 

  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “ATrain” satellite observations. J. Geophys. Res., 117, D14105, doi: 10.1029/2011JD017237.

    Article  Google Scholar 

  • Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795.

    Article  Google Scholar 

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039.

    Article  Google Scholar 

  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and airsea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.

    Article  Google Scholar 

  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60-day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407–1436.

    Article  Google Scholar 

  • Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from the outgoing long-wave radiation. Mon. Wea. Rev., 114, 1354–1367.

    Article  Google Scholar 

  • Lau, W. K. M., and D. E. Waliser, Eds., 2005: Intraseasonal Variability of the Atmosphere-Ocean Climate System. Springer, Heidelberg, 614 pp.

    Google Scholar 

  • Li, C. Y., Z. X. Long, and Q. Y. Zhang, 2001: Strong/weak summer monsoon activity over the South China Sea and atmospheric intraseasonal oscillation. Adv. Atmos. Sci., 18, 1146–1160.

    Article  Google Scholar 

  • Li, C. Y., X. L. Jia, J. A. Ling, W. Zhou, and C. D. Zhang, 2009: Sensitivity of MJO simulations to convective heating profiles. Climate Dyn., 32, 167–187.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global oceanatmosphereland system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Li, T., X. Jia, and M. Dong, 2006: The importance of the atmospheric intraseasonal oscillation in the prediction of the weather and climate. Acta Meteorologica Sinica, 64, 412–419. (in Chinese)

    Google Scholar 

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.

    Google Scholar 

  • Lin, J. L., K. M. Weickman, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M. I. Lee, 2008: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Climate, 21, 4541–4567.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartman, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.

    Article  Google Scholar 

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642–3659.

    Article  Google Scholar 

  • Nakazawa, T., 1986: Intraseasonal variations of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 17–34.

    Google Scholar 

  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876–893.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

    Article  Google Scholar 

  • Seo, K.-H., J.-K. Schemm, C. Jones, and S. Moorthi, 2005: Forecast skill of the Tropical Intraseasonal Oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dyn., 25, 265–284.

    Article  Google Scholar 

  • Seo, K.-H., J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): The effect of sea surface temperature. Mon. Wea. Rev., 135, 1807–1827.

    Article  Google Scholar 

  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Article  Google Scholar 

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillation in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi: 10.1007/s00382-012-1607-6.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor -CMIP5-design.pdf]

    Google Scholar 

  • Teng, H., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J. Climate, 16, 3572–3584.

    Article  Google Scholar 

  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423–446.

    Article  Google Scholar 

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, B., and X. **e, 1997: A Model for the Boreal Summer Intraseasonal Oscillation. J. Atmos. Sci., 54, 72–86.

    Article  Google Scholar 

  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Wheeler, M. C., and H. Hendon, 2004: An All-Season Real-Time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  • Wu, Q. Z., J. M. Feng, W. J. Dong, L. N. Wang, D. Y. Ji, and H. Q. Cheng, 2013: Introduction of the CMIP5 experiments carried out by BNU-ESM. Progressus Inquisitiones de Mutatione Climatis, 9, 291–294.

    Google Scholar 

  • Wu, T. W., R. C. Yu, and F. Zhang, 2008: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci., 65, 2235–2253.

    Article  Google Scholar 

  • Wu, T. W., and Coauthors, 2010: The Bei**g climate center for atmospheric general circulation model (BCC AGCM 2.0.1): Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • **e, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • **e, P., and Coauthors, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–2214.

    Article  Google Scholar 

  • Yang, J., Q. Bao, and X. C. Wang, 2013: Intensified eastward and northward propagation of tropical intraseasonal oscillation over the equatorial Indian Ocean in a global warming scenario. Adv. Atmos. Sci., 30, 167–174, doi: 10.1007/s00376-012-1260-3.

    Article  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.

    Google Scholar 

  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229.

    Google Scholar 

  • Zhang, C, M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden-Julian oscillation by four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592.

    Article  Google Scholar 

  • Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the national center for atmospheric research community climate model, version 3. J. Geophys. Res., 110, D09109, doi: 10.1029/2004JD005617.

    Google Scholar 

  • Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the Tropical Indian Ocean. J. Climate, 26, 291–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhou, T., Song, L. et al. The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 project. Adv. Atmos. Sci. 31, 1167–1180 (2014). https://doi.org/10.1007/s00376-014-3211-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3211-7

Key words

Navigation