Log in

Recent Advances on the Pragmatic Roles of Phytomelatonin and Its Exogenous Application for Abiotic Stress Management in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Melatonin (N-acetyl-5-methoxy-tryptamine), derivative of tryptophan, manifested as a conserved domain, which is ubiquitously apportioned from bacteria to higher organisms extending to fungi and algae as well. Melatonin is entailed in umpteen developmental processes of plants, including stress responses. The pleiotropic impact of melatonin in regulating transcripts of manifold genes validate its imperative contribution as multi-regulatory substance. Albeit, the progressive research regarding plants is yet prelusive in contrast to orthodox melatonin physiology in animals. This reinforces the exigency for comprehensive reassessment pertaining to its potential in biochemical and physiological processes, anti-stress response against abiotic stimulators (temperatures, salinity, drought, toxins, etc.), detoxification mechanism, and its other salubrious effect. Stressors are known to create RNS and ROS, which induces oxidative damage in plants. Cellular deterioration and mortality are a result of negligence toward oxidative damage. Tremendous quantum leap has been made in comprehending, how melatonin safeguards plants against abiotic stress. Here, focus will be on mechanistic basis of melatonin-mediated protection to abate abiotic stress. Abiotic stress induces melatonin synthesis and this redeeming upsurge in melatonin succors plant to thrive under stress conditions. Melatonin is considered an excellent antioxidant because it effectively scavenges a wide range of RNS and ROS. Melatonin maintains ROS levels in peculiar ways: (a) chemical interaction between melatonin and ROS, causing their inactivation and (b) melatonin-induced activation of SOD, POD, APX, CAT, and GPX leads to ROS detoxification. The contemporary study gives a comprehensive review on abiotic stress response of melatonin, particularly, its mitigating impact when applied exogenously in plants under environmental stress conditions. The commentary will allow the researchers to comprehend the prevailing plant stress conditions and further contemplate the tendency of phytomelatonin in crop research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    CAS  Google Scholar 

  • Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Han Q (2019) Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 7:e7793

    PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Cui W, Kamran M, Ahmad I, Meng X, Wu X, Su W, Javed T, El-Serehy HA, Jia Z, Han Q (2020) Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J Plant Growth Regul 40(3):1270–1283

    Google Scholar 

  • Ahn HR, Kim YJ, Lim YJ, Duan S, Eom SH, Jung KH (2021) Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants 10(1):129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MN, Zhang L, Yang L, Islam MR, Liu Y, Luo H, Chan Z (2018) Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics 19(1):1–14

    Google Scholar 

  • Ali Shah A, Ahmed S, Yasin NA (2020) Cadmium stress consolation in melatonin supplemented Cucumis sativus through modulation of antioxidative defense system. Iranian J Plant Physiol 10(2):3135–3154

    Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Khan LU, Shahid S, Jahan MS (2021) Melatonin alleviates salt damage in tomato seedling: A root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci Hortic 285:110145

    CAS  Google Scholar 

  • Amjadi Z, Namdjoyan S, Soorki AA (2021) Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 30(3):387–401

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121(2):195–207

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020) Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction 33(2):77–87

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2021) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19

    CAS  PubMed  Google Scholar 

  • Back K (2021) Melatonin metabolism, signaling and possible roles in plants. Plant J 105(2):376–391

    CAS  PubMed  Google Scholar 

  • Bai Y, Guo J, Reiter RJ, Wei Y, Shi H (2020) Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. J Exp Bot 71(18):5645–5655

    CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56(3):238–245

    CAS  PubMed  Google Scholar 

  • Balaji TMM, Varadarajan S, Bandyopadhyay D, Jagannathan R, Patil S, Raj T (2021) A potential protection of melatonin on pathogenesis of oral sub-mucous fibrosis (OSMF): a current update. Melatonin Res 4(1):84–98

    Google Scholar 

  • Bawa G, Feng L, Shi J, Chen G, Cheng Y, Luo J, Wu W, Ngoke B, Cheng P, Tang Z, Pu T (2020) Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. Funct Plant Biol 47(9):815–824

    CAS  PubMed  Google Scholar 

  • Bose SK, Howlader P (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environ Exp Bot 176:104063

    CAS  Google Scholar 

  • Cao L, ** XJ, Zhang YX (2019) Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism. Photosynthetica 57(3):812–819

    CAS  Google Scholar 

  • Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants 9(2):220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu L, Lu B, Ma T, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Bai Z, Li C (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS ONE 15(1):e0228241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi GH, Back K (2019) Suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against cadmium, senescence, salt, and tunicamycin in rice plants. Biomolecules 9(10):589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Li J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86–95

    CAS  PubMed  Google Scholar 

  • Danilova ED, Efimova MV, Kolomeichuk LV, Kuznetsov VV (2020) Melatonin supports photochemical activity of assimilation apparatus and delays senescence of leaves of monocotyledonous plants. Doklady Biochem Biophys 495(1):271–275

    CAS  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana. 20(2):223–235

    Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20(5):1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath B, Sikdar A, Islam S, Hasan K, Li M, Qiu D (2021) Physiological and molecular responses to acid rain stress in plants and the impact of melatonin, glutathione and silicon in the amendment of plant acid rain stress. Molecules 26(4):862

    CAS  PubMed  PubMed Central  Google Scholar 

  • ElSayed AI, Rafudeen MS, Gomaa AM, Hasanuzzaman M (2021) Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. Physiol Plant 173(4):1369–1381

    CAS  PubMed  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7(1):1–11

    Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 65(1):e12514

    PubMed  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. Journal of Integrative Plant Biology 49(6):742–750

    CAS  Google Scholar 

  • Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y (2018) Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23(7):1580

    PubMed  PubMed Central  Google Scholar 

  • Gökbayrak Z, Engin H, Kiraz H (2020) Effects of Melatonin and IAA on Adventitious Root Formation in Rootstock 5BB and cv. Cabernet Sauvignon (Vitis vinifera L.). Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi 23(4):835–841

    Google Scholar 

  • Golovatskaya IF, Boyko EV, Reznichenko AE, Plyusnin IN (2020) Melatonin and Selenium Regulate Growth and Oxidative Status of Saussurea orgaadayi In Vitro Cell Cultures Derived from Different Explants. Russ J Plant Physiol 67(6):1036–1045

    CAS  Google Scholar 

  • Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Shen W (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261:28–37

    CAS  PubMed  Google Scholar 

  • Hardeland R (2019) Melatonin in the evolution of plants and other phototrophs. Melatonin Res 2(3):10–36

    Google Scholar 

  • Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin—A pleiotropic, orchestrating regulator molecule. Progress Neurobiol 93(3):350–384

    CAS  Google Scholar 

  • Hasan M, Ahammed GJ, Yin L, Shi K, **a X, Zhou Y, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    PubMed  PubMed Central  Google Scholar 

  • Haydari M, Maresca V, Rigano D, Taleei A, Shahnejat-Bushehri AA, Hadian J, Basile A (2019) Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha× piperita and Mentha arvensis L. Antioxidants 8(11):547

    CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhuang X, Zhou J, Sun L, Wan H, Li H, Lyu D (2020) Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks. Tree Physiol 40(6):746–761

    CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2008) Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul 55(1):29–34

    Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2018) Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 8(4):33

    Google Scholar 

  • Hu Z, Fu Q, Zheng J, Zhang A, Wang H (2020) Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis. Horticulture Research 7(1):1–15

    CAS  Google Scholar 

  • Huang YH, Liu SJ, Yuan S, Guan C, Tian DY, Cui X, Zhang YW, Yang FY (2017) Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 7(1):1–13

    Google Scholar 

  • Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, Hu C, Yuan M (2019) Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci 10:677

    PubMed  PubMed Central  Google Scholar 

  • Huang Z, **e W, Wang M, Liu X, Ashraf U, Qin D, Zhuang M, Li W, Li Y, Wang S, Tian H (2020) Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles’(NPs) stress. Chemosphere 250:126337

    CAS  PubMed  Google Scholar 

  • Huo R, Liu Z, Yu X, Li Z (2020) The interaction network and signaling specificity of two-component system in Arabidopsis. Int J Mol Sci 21(14):4898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A, Lee IJ (2021) Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants. https://doi.org/10.1093/aobpla/plab026

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafari M, Shahsavar A (2020) The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress. PLoS ONE 15(10):e0240427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19(1):1–16

    CAS  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Hasan M, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S (2021) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA-and GA-mediated pathways. Front Plant Sci 12:381

    Google Scholar 

  • Jan S, Singh R, Bhardwaj R, Ahmad P, Kapoor D (2020) Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech. https://doi.org/10.1007/s13205-020-02454-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

    CAS  PubMed  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: Awakening the defense mechanisms during plant oxidative stress. Plants 9(4):407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobylińska A, Posmyk MM (2016) Melatonin restricts Pb-induced PCD by enhancing BI-1 expression in tobacco suspension cells. Biometals 29(6):1059–1074

    PubMed  PubMed Central  Google Scholar 

  • Kong XM, Ge WY, Wei BD, Zhou Q, Zhou X, Zhao YB, Ji SJ (2020) Melatonin ameliorates chilling injury in green bell peppers during storage by regulating membrane lipid metabolism and antioxidant capacity. Postharvest Biol Technol 170:111315

    CAS  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr 42(11–12):1402–1415

    CAS  Google Scholar 

  • Lee HY, Back K (2020) The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor. Melatonin Res 3(2):177–186

    Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80(10):2587–2587

    CAS  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66(3):669–680

    CAS  PubMed  Google Scholar 

  • Li C, Liang B, Chang C, Wei Z, Zhou S, Ma F (2016a) Exogenous melatonin improved potassium content in Malus under different stress conditions. J Pineal Res 61(2):218–229

    PubMed  Google Scholar 

  • Li H, Dong Y, Chang J, He J, Chen H, Liu Q, Zhang X (2016b) High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Han WY (2018) Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23(1):165

    PubMed  PubMed Central  Google Scholar 

  • Li J, Liu J, Zhu T, Zhao C, Li L, Chen M (2019a) The role of melatonin in salt stress responses. Int J Mol Sci 20(7):1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Xu Y, Bai LK, Zhang SY, Wang Y (2019b) Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems. Protoplasma 256(2):471–490

    CAS  PubMed  Google Scholar 

  • Li D, Wei J, Peng Z, Ma W, Yang Q, Song Z, Sun W, Yang W, Yuan L, Xu X, Chang W (2020a) Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J Pineal Res 68(3):e12640

    CAS  PubMed  Google Scholar 

  • Li SM, Zheng HX, Zhang XS, Sui N (2020b) Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep 40(2):271–282

    CAS  PubMed  Google Scholar 

  • Li Y, Liu C, Shi Q, Yang F, Wei M (2021) Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environ Exp Bot 185:104407

    CAS  Google Scholar 

  • Liang D, Shen Y, Ni Z, Wang Q, Lei Z, Xu N, Deng Q, Lin L, Wang J, Lv X, **a H (2018) Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front Plant Sci 9:426

    PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang Y, Yun Z, Hu M, Liu J, Jiang Y, Zhang Z (2020) Melatonin enhances cold tolerance by regulating energy and proline metabolism in litchi fruit. Foods 9(4):454

    PubMed  PubMed Central  Google Scholar 

  • Malik Z, Afzal S, Dawood M, Abbasi GH, Khan MI, Kamran M, Zhran M, Hayat MT, Aslam MN, Rafay M (2021) Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environ Geochem Health 44(5):1451–1469

    PubMed  Google Scholar 

  • Mao J, Niu C, Li K, Chen S, Tahir MM, Han M, Zhang D (2020) Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biol 20(1):1–11

    CAS  Google Scholar 

  • Marta B, Szafrańska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Fron Plant Sci 7:575

    Google Scholar 

  • Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J (2020) Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci 21(21):8258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur P, Pramanik S (2020) Prospective Role of Melatonin in Signaling and Alleviation of Stress in Plants. In: Baluška F, Mukherjee S, Ramakrishna A (eds) Neurotransmitters in Plant Signaling and Communication. Springer, Cham, pp 213–240

    Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, ** ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57(2):200–212

    CAS  PubMed  Google Scholar 

  • Meng S, Wang X, Bian Z, Li Z, Yang F, Wang S, Yoder JI, Lu J (2021) Melatonin enhances nitrogen metabolism and haustorium development in hemiparasite Santalum album Linn. Environ Exp Bot 186:104460

    CAS  Google Scholar 

  • Mir AR, Siddiqui H, Alam P, Hayat S (2020) Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—a dose-dependent effect. Protoplasma 257(6):1685–1700

    CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Elkelish A, Dafea M, Khan M, Arnao MB, Abdelhamid MT, Ai S (2020) Role of melatonin in plant tolerance to soil stressors: Salinity, pH and heavy metals. Molecules 25(22):5359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, David A, Yadav S, Baluška F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152(4):714–728

    CAS  PubMed  Google Scholar 

  • Nabaei M, Amooaghaie R (2019) Interactive effect of melatonin and sodium nitroprusside on seed germination and seedling growth of Catharanthus roseus under cadmium stress. Russ J Plant Physiol 66(1):128–139

    CAS  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    CAS  PubMed  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 9(11):1078

    PubMed  PubMed Central  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45(1):24–31

    CAS  PubMed  Google Scholar 

  • Qi C, Zhang H, Liu Y, Wang X, Dong D, Yuan X, Li X, Zhang X, Li X, Zhang N, Guo YD (2020) CsSNAT positively regulates salt tolerance and growth of cucumber by promoting melatonin biosynthesis. Environ Exp Bot 175:104036

    CAS  Google Scholar 

  • Rajora N, Vats S, Raturi G, Thakral V, Kaur S, Rachappanavar V, Deshmukh R (2022) Seed priming with melatonin: a promising approach to combat abiotic stress in plants. Plant Stress 4:100071

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018) Mitochondria: central organelles for melatonin′ s antioxidant and anti-aging actions. Molecules 23(2):509

    PubMed  PubMed Central  Google Scholar 

  • Ren S, Rutto L, Katuuramu D (2019) Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE 14(8):e0221687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Ye J, Yin L, Li G, Deng X, Wang S (2020) Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy 10(5):663

    CAS  Google Scholar 

  • Riaz HR, Hashmi SS, Khan T, Hano C, Giglioli-Guivarc’h N, Abbasi BH (2018) Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Alba. Artif Cells, Nanomed Biotechnol 46(sup2):936–950

    CAS  PubMed  Google Scholar 

  • Rossi S, Chapman C, Huang B (2020) Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in cree** bentgrass. Environ Exp Bot 177:104116

    CAS  Google Scholar 

  • Sabkia, M. H., Ongb, P. Y., Ibrahimc, N., Leea, C. T., Klemešd, J. J., Lie, C., & Gaoe, Y. (2021). A review on abiotic stress tolerance and plant growth metabolite framework by plant growth-promoting bacteria for sustainable agriculture. CHEMICAL ENGINEERING83.

  • Sajjad, N., Bhat, E.A., Hassan, S., Ali, R. and Shah, D., 2020. Role of Melatonin in Amelioration of Abiotic Stress‐induced Damages. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, pp.306–317.

  • Sharif R, **e C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li Y (2018) Melatonin and its effects on plant systems. Molecules 23(9):2352

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    CAS  PubMed  Google Scholar 

  • Shen, J., Wang, L., Wang, X., **, K. and **ong, C., 2021. Interplay Between Root Structure and Function in Enhancing Efficiency of Nitrogen and Phosphorus Acquisition. The Root Systems in Sustainable Agricultural Intensification, pp.121–157.

  • Shi H, Tan DX, Reiter RJ, Ye T, Yang F, Chan Z (2015) Melatonin induces class A1 heat-shock factors (HSFA 1s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res 58(3):335–342

    CAS  PubMed  Google Scholar 

  • Shi X, Xu S, Mu D, Sadeghnezhad E, Li Q, Ma Z, Wang L (2019) Exogenous melatonin delays dark-induced grape leaf senescence by regulation of antioxidant system and senescence associated genes (SAGs). Plants 8(10):366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM (2020) Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. J Plant Growth Regul 39(4):1488–1502

    CAS  Google Scholar 

  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X (2020) Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci 21(3):782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Liu L, Wang L, Li B, ** C, Lin X (2021) Melatonin: A master regulator of plant development and stress responses. J Integr Plant Biol 63(1):126–145

    CAS  PubMed  Google Scholar 

  • Tan DX, Reiter RJ (2020) An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J Exp Bot 71(16):4677–4689

    CAS  PubMed  Google Scholar 

  • Tan XL, Fan ZQ, Kuang JF, Lu WJ, Reiter RJ, Lakshmanan P, Su XG, Zhou J, Chen JY, Shan W (2019) Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J Pineal Res 67(1):e12570

    PubMed  Google Scholar 

  • Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52(3):332–339

    CAS  PubMed  Google Scholar 

  • Tuan PA, Kumar R, Rehal PK, Toora PK, Ayele BT (2018) Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front Plant Sci 9:668

    PubMed  PubMed Central  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of A merican elm (U lmus americana L.). J Pineal Res 55(4):435–442

    CAS  PubMed  Google Scholar 

  • Wang D, Chen Q, Chen W, Guo Q, **a Y, Wang S, **g D, Liang G (2021a) Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environ Exp Bot 181:104291

    CAS  Google Scholar 

  • Wang T, Song J, Liu Z, Liu Z, Cui J (2021b) Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings. Environ Sci Pollut Res 28(12):15394–15405

    CAS  Google Scholar 

  • Wu M, Wu J, Gan Y (2020) The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants. Plant Growth Regul 91(2):169–174

    CAS  Google Scholar 

  • **a H, Ni Z, Hu R, Lin L, Deng H, Wang J, Tang Y, Sun G, Wang X, Li H, Liao M (2020) Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings. Int J Mol Sci 21(3):852

    CAS  PubMed  PubMed Central  Google Scholar 

  • **e Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B (2020) Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Front Plant Sci 11:618680

    PubMed  Google Scholar 

  • Xu T, Chen Y, Kang H (2019) Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Front Plant Sci 10:1388

    PubMed  PubMed Central  Google Scholar 

  • Yan H, Mao P (2021) Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat (Avena sativa L.) seeds. Int J Mol Sci 22(2):811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Wei H, Ding Y, Li W, Chen L, Ding C, Tang S, Jiang Y, Liu Z, Li G (2021) Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS. Environ Exp Bot 182:104328

    CAS  Google Scholar 

  • Yang XL, Xu H, Li D, Gao X, Li TL, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56(3):884–892

    CAS  Google Scholar 

  • Yang M, Wang L, Belwal T, Zhang X, Lu H, Chen C, Li L (2020) Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho Molecules 25(1):12

    CAS  Google Scholar 

  • Yang L, Sun Q, Wang Y, Chan Z (2021) Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 764:145082

    CAS  PubMed  Google Scholar 

  • Yao JW, Ma Z, Ma YQ, Zhu Y, Lei MQ, Hao CY, Chen LY, Xu ZQ, Huang X (2021) Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant, Cell Environ 44(1):114–129

    CAS  PubMed  Google Scholar 

  • Yin Z, Lu J, Meng S, Liu Y, Mostafa I, Qi M, Li T (2019) Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J Plant Interact 14(1):453–463

    CAS  Google Scholar 

  • Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci 9:256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Song W (2019) Melatonin: A small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20(3):709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54(1):15–23

    CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197

    PubMed  PubMed Central  Google Scholar 

  • Zhang YP, Xu S, Yang SJ, Chen YY (2017) Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate–glutathione and proline metabolism in melon seedlings (Cucumis melo L). J Hortic Sci Biotechnol 92(3):313–324

    CAS  Google Scholar 

  • Zhang M, He S, Zhan Y, Qin B, ** X, Wang M, Wu Y (2019a) Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS ONE 14(12):e0226542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Hu Q, Liu Y, Cheng P, Cheng H, Liu W, **ng X, Guan Z, Fang W, Chen S, Jiang J (2019b) Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. J Pineal Res 67(2):e12582

    PubMed  Google Scholar 

  • Zhang T, Shi Z, Zhang X, Zheng S, Wang J, Mo J (2020) Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci Hortic 262:109070

    CAS  Google Scholar 

  • Zhang H, Liu L, Wang Z, Feng G, Gao Q, Li X (2021) Induction of low temperature tolerance in wheat by pre-soaking and parental treatment with melatonin. Molecules 26(4):1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CZ (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50(1):83–88

    CAS  PubMed  Google Scholar 

  • Zhao G, Zhao Y, Yu X, Kiprotich F, Han H, Guan R, Shen W (2018) Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int J Mol Sci 19(7):1912

    PubMed  PubMed Central  Google Scholar 

  • Zhao G, Yu X, Lou W, Wei S, Wang R, Wan Q, Shen W (2019) Transgenic Arabidopsis overexpressing MsSNAT enhances salt tolerance via the increase in autophagy, and the reestablishment of redox and ion homeostasis. Environ Exp Bot 164:20–28

    CAS  Google Scholar 

  • Zhao YQ, Zhang ZW, Chen YE, Ding CB, Yuan S, Reiter RJ, Yuan M (2021) Melatonin: a potential agent in delaying leaf senescence. Crit Rev Plant Sci 40(1):1–22

    CAS  Google Scholar 

  • Zhou X, Zhao H, Cao K, Hu L, Du T, Baluška F, Zou Z (2016) Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front Plant Sci 7:1823

    PubMed  PubMed Central  Google Scholar 

  • Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM (2019) Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biol 19(1):1–18

    Google Scholar 

  • Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Li X (2017) Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 22(10):1727

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJ and PA: designed and conceptualized the study. SJ and BS: prepared the manuscript. SJ and SM: edited the manuscript. SJ, RS and RB: reviewed the edited version of manuscript. SJ, BS and PA: completed the final draft of manuscript.

Corresponding author

Correspondence to Parvaiz Ahmad.

Additional information

Handling Editor: Tariq Aftab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, S., Singh, B., Bhardwaj, R. et al. Recent Advances on the Pragmatic Roles of Phytomelatonin and Its Exogenous Application for Abiotic Stress Management in Plants. J Plant Growth Regul 42, 4885–4900 (2023). https://doi.org/10.1007/s00344-022-10766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10766-3

Keywords

Navigation