Melatonin: Role in Abiotic Stress Resistance and Tolerance

  • Chapter
  • First Online:
Plant Growth Regulators

Abstract

Melatonin (Mel) is a small molecular weight indoleamine hormone involved in plant growth and development and is considered as a candidate phytohormone that affects responses in various biotic and abiotic stresses. Plant’s exposure to abiotic stresses causes increase in endogenous Mel levels, consequent upregulation of Mel biosynthesis genes and a further rise in Mel content. Mel enhances plant resistance to abiotic stress in two ways, i.e. either by direct scavenging of reactive oxygen species (ROS) molecules or by indirect pathway via enhancing antioxidant enzyme activity, photosynthetic efficiency and metabolite content and by regulating stress transcription factors. Interestingly, other precursors and metabolite molecules associated with Mel can also increase the plant’s tolerance to abiotic stress. Furthermore, Mel also increases polyamine contents by accelerating the metabolic flow from the precursor amino acids arginine and methionine to polyamines. However, its function in abiotic stress resistance and the underlying mechanisms is still less clear. This chapter will explore the mechanisms by which Mel alleviates various abiotic stresses by its actions on antioxidants, photosynthesis, ion regulation, phytohormone and stress signalling. This chapter mainly focuses on the regulatory mechanisms of Mel and how genetic modifications can enhance levels of endogenous Mel, which will improve plant tolerance against various abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Kamran M, Ding R, Meng X, Wang H et al (2019) Exogenous melatonin confers drought stress by promoting plant growth photosynthetic capacity and antioxidant defense system of maize seedlings. Peer J 7:e7793

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam MN, Zhang L, Yang L, Islam R, Liu Y, Luo H et al (2018) Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics 19:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Leigh R (2010) Ion homeostasis. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 245–262

    Google Scholar 

  • Angel C (2007) The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr Mol Med 7:638–649

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018a) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018b) The multi-regulatory properties of melatonin in plants. In: Ramakrishna A, Roshchina V (eds) Neurotransmitters in plants. CRC Press, New York/Boca Raton, pp 71–101

    Chapter  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Sci 24:38–48

    Article  CAS  Google Scholar 

  • Arora D, Bhatla SC (2017) Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med 106:315–328

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839

    Article  CAS  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyse tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena P (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    Article  CAS  PubMed  Google Scholar 

  • Bałabusta M, Szafranska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment potential for increasing crop plant productivity, genotypic selection. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1995) Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni-, and Zn-stress. New Phytol 129:404–409

    Article  Google Scholar 

  • Buchanan BB, Gruissen W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1–367

    Google Scholar 

  • Byeon Y, Back KW (2013) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N acetylserotonin methyltransferase activities. J Pineal Res 56:189–195

    Article  PubMed  CAS  Google Scholar 

  • Byeon Y, Lee HJ, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res 60:65–73

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back KW (2014a) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Park S, Lee HY, Kim YS, Back KW (2014b) Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J Pineal Res 56:275–282

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Tan DX, Reiter RJ et al (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 59:448–454

    Article  CAS  PubMed  Google Scholar 

  • Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plan Theory 9(2):220

    CAS  Google Scholar 

  • Chen L, Liu L, Lu B, Ma T, Jiang D, Li J et al (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One 15(1):e0228241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirillo C, Rouphael Y, Caputo R, Raimondi G, Sifola MI, De Pascale S (2016) Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. J Horti Sci Biotech 91:14–22

    Article  CAS  Google Scholar 

  • Cui G, Zhao X, Liu S, Sun F, Zhang C, ** Y (2017) Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol Biochem 118:138–149

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológ Colomb 20:223–235

    Google Scholar 

  • de Lima VR, Caro MS, Munford ML, Desbat B, Dufourc E, Pasa AA et al (2010) Influence of melatonin on the order of phosphatidylcholine-based membranes. J Pineal Res 49:169–175

    PubMed  Google Scholar 

  • De luca V, Marineau C, Brisson N (1989) Molecular-cloning and analysis of cDNA-encoding a plant tryptophan decarboxylase—comparison with animal dopa decarboxylases. PNAS USA 86:2582–2586

    Article  PubMed  PubMed Central  Google Scholar 

  • Decoteau DR (2000) Vegetable crops. Prentice Hall, New Jersey, p 464

    Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Tren Biotech 23(11):547–552

    Article  CAS  Google Scholar 

  • Dhole AM, Shelat HN (2018) Phytomelatonin: a plant hormone for management of stress. J Anal Pharm Res 7:1

    Article  Google Scholar 

  • Di Fiore S, Li QR, Leech MJ, Schuster F, Emans N, Fischer R, Schillberg S (2002) Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol 129:1160–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dies H, Cheung B, Tang J, Rheinstädter MC (2015) The organization of melatonin in lipid membranes. Biochim Biophys Acta 1848:1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Wang M, Liu B, Zhang S (2017) Exogenous melatonin mitigates photoinhibition by accelerating nonphotochemical quenching in tomato seedlings exposed to moderate light during chilling. Front Plant Sci 8:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Erland LA, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10:e1096469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan J, Ren J, Zhu W, Amombo E, Fu J, Chen L (2014) Antioxidant responses and gene expression in bermudagrass under cold stress. J Am Soc Horticult Sci 139:699–705

    Article  CAS  Google Scholar 

  • Favero GL, Franceschetti F, Bonomini LF, Rodella Rezzani R (2017) Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endo 2017:13

    Google Scholar 

  • Fleta-Soriano E, Díaz L, Bonet E, Munné-Bosch S (2017) Melatonin may exert a protective role against drought stress in maize. J Agron Crop Sci 203:286–294

    Article  CAS  Google Scholar 

  • Flowers T, Galal H, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Func Plant Biol 37:604–612

    Article  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E et al (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:39865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L et al (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308–11313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188

    Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  • Gong X, Shi S, Dou F, Song Y, Ma F (2017) Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Mol 22:1542

    Article  CAS  Google Scholar 

  • Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G et al (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261:28–37

    Article  CAS  PubMed  Google Scholar 

  • Gürel A, Avcıoğlu R (2001) Bitkilerde strese dayanıklılık fizyolojisi. In: Özcan S, Gürel E, Babaoğlu M (eds) Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları, vol 21. Selçuk University Foundation, Bölüm, Konya, pp 308–313

    Google Scholar 

  • Hall AE (2018) Crop responses to environment. Adapting to global climate change, 2nd edn. CRC Press, Boca Raton, p 256

    Book  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C et al (2017) Effects of melatonin on anti-oxidative systems and photosystem ii in cold-stressed rice seedlings. Front Plant Sci 8:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, **a X, Zhou Y et al (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Fan J, **e Y, Amombo E, Liu A, Gitau MM et al (2016) Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem 100:94e104

    Article  CAS  Google Scholar 

  • Huang B, Chen Y-E, Zhao Y-Q, Ding C-B, Liao J-Q et al (2019) Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci 10:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Liu SJ, Yuan S, Guan C, Tian DY et al (2017) Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 7:12212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung S, Wang C, Ivanov S, Alexieva V, Yu C (2007) Repetition of hydrogen peroxide treatment induces a chilling tolerance comparable to cold acclimation in mung bean. J Ameri Soci Horti Sci 132:770–776

    Article  CAS  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19:414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janas K, Posmyk M (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Jayaweera M, Kasturiarachchi J (2004) Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Sci Tech 50:217–225

    Article  CAS  Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:82

    Article  CAS  Google Scholar 

  • Jiang Y, Liang D, Liao MA, Lin L (2017) Effects of melatonin on the growth of radish Seedlings under salt stress. In Proceedings of the 3rd international conference on renewable energy and environmental technology (ICERE 2017), Hanoi, Vietnam, pp 25–27

    Google Scholar 

  • Kalefetoğlu T, Ekmekçi Y (2005) The effects on drought on plants and tolerance mechanisms. Gazi Uni J Sci 18:723–740

    Google Scholar 

  • Kang S, Kang K, Lee K, Back KW (2007) Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep 26:2009–2015

    Google Scholar 

  • Kang K, Kim YS, Park S, Back KW (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang K, Kong K, Park S, Natsagdorj U, Kim Y, Back K (2011) Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res 50:304–309

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Park S, Byeon Y, Back KW (2013) Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55:7–13

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kang K, Lee K, Back KW (2008) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    Article  CAS  Google Scholar 

  • Kanjanaphachoat P, Wei BY, Lo SF, Wang IW, Wang CS (2012) Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth. Plant Mol Biol 78:525–543

    Article  CAS  PubMed  Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65:e12526

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Bhatla SC (2016) Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42–53

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemo 225:627–638

    Article  CAS  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X et al (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:1–11

    Article  Google Scholar 

  • Kołodziejczyk I, Dzitkob K, Szewczyk R, Posmyka MM (2016) Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J Plant Physiol 193:47–56

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A, Karaca A, Kocacinar F, Cuci Y (2017) The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. Tarım Bilimleri Dergisi 23:167–176

    Google Scholar 

  • Kostopoulou Z, Therios I, Roumeliotis E, Kanellis AK, Molassiotis A (2015) Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol Biochem 86:155–165

    Article  CAS  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Lee HY, Back K (2016) Mitogen-activated protein kinase pathways are required for melatonin mediated defense responses in plants. J Pineal Res 60:327–335

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2018) Melatonin plays a pivotal role in conferring tolerance again endoplasmic reticulum stress via mitogen-activated protein kinases and bZIP60 in Arabidopsis thaliana. Melatonin Res 1:94–108

    Article  Google Scholar 

  • Lei XY, Zhu RY, Zhang GY, Dai YR (2004) Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36:126–131

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tan DX, Jiang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C et al (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53:298–306

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang D, Wang H, Li Y, Li R (2017a) Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agri 104(3):219–228

    Article  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X et al (2017b) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:1–9

    Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C et al (2018a) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    Google Scholar 

  • Li H, He J, Yang X, Li X, Luo D, Wei C (2016a) Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.). J Pineal Res 60:206–216

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zeng L, Cheng Y, Lu G, Fu G, Ma H et al (2018b) Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiol Plant 40:43

    Article  CAS  Google Scholar 

  • Li X, Tan DX, Jiang D, Liu F (2016b) Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J Pineal Res 61:328–339

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu B, Cui Y, Yin Y (2017c) Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Grow Reg 83:441–454

    Article  CAS  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H et al (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Ni Z, **a H, **e Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scient Hort 246:34–43

    Article  CAS  Google Scholar 

  • Liu J, Wang W, Wang L, Sun Y (2015a) Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul 77:317–326

    Article  CAS  Google Scholar 

  • Liu N, Gong B, ** Z, Wang X, Wei M et al (2015b) Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal. J Plant Physiol 186–187:68–77

    Article  PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Ma X, Zhang J, Burgess P, Rossi S, Huang B (2018) Interactive effects of melatonin and cytokinin on alleviating drought induced leaf senescence in cree** bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1–11

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity vs drought stress: An overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC et al (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:1–20

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, ** ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57:200–212

    Article  CAS  PubMed  Google Scholar 

  • Misbahuddin M, Fariduddin A (2002) Water hyacinth removes arsenic from arsenic-contaminated drinking water. Arch Environ Health 57:516–518

    Article  CAS  PubMed  Google Scholar 

  • Moussaa HR, Algamal SMA (2017) Does exogenous application of melatonin ameliorate boron toxicity in spinach plants? Int J Vege Sci 23(3):233–245

    Article  Google Scholar 

  • Munavalli GR, Saler PS (2009) Treatment of dairy wastewater by water hyacinth. Water Sci Tech 59:713–722

    Article  CAS  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena P (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M et al (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Wang Q, Shah FA, Liu W, Wang D, Huang S et al (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:799

    Article  PubMed Central  CAS  Google Scholar 

  • Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H (2009) Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 46:373–382

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Zheng J, Liu J, Guo J, Liu F, Liu L, Wan H. Analysis of the ASMT Gene Family in Pepper (Capsicum annuum L.): Identification, Phylogeny, and Expression Profiles. Int J Genomics. 2019. https://doi.org/10.1155/2019/7241096

  • Paredes SD, Marchena AM, Bejarano I, Espino J, Barriga C, Rial RV et al (2009) Melatonin and tryptophan affect the activity-rest rhythm, core and peripheral temperatures, and interleukin levels in the ringdove: changes with age. J Geront Series A Biol Sci Medi Sci 63:340–350

    Article  CAS  Google Scholar 

  • Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53:385–389

    Article  CAS  PubMed  Google Scholar 

  • Park S, Byeon Y, Back KW (2013) Functional analyses of three ASMT gene family members in rice plants. J Pineal Res 55:409–415

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kang K, Lee K, Choi D, Kim Y, Back K (2009) Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Planta 230:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Limson J, Nyokong T, Daya S (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32:237–242

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Pierce LC (1987) Vegetables. Characteristics, production and marketing. New York, Wiley, p 448

    Google Scholar 

  • Poeggeler B, Reiter R, Hardeland R, Tan D-X, Barlow-Walden L (1996) Melatonin and structurally-related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 2:179–184

    Article  CAS  PubMed  Google Scholar 

  • Poeggeler B, Thuermann S, Dose A, Schoenke M, Burkhardt S, Hardeland R (2002) Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res 33:20–30

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Balabusta M, Wieczorek M, Sliwinska E, Jana KM (2009) Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46:214–223

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Strazalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, p 432

    Book  Google Scholar 

  • Qi Z-Y, Wang KX, Yan MY et al (2018) Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Mol 23:386

    Article  CAS  Google Scholar 

  • Riddle S, Tran H, Dewitt J, Andrews J (2002) Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environ Sci Technol 36:1965–1970

    Article  CAS  PubMed  Google Scholar 

  • Romero A, Ramos E, de Los Ríos C, Egea J, del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56:343–370

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Romero L, Ruiz JM (2016) Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J Plant Physiol 190:72–78

    Article  PubMed  CAS  Google Scholar 

  • Sarafi E, Tsouvaltzis P, Chatzissavvidis C, Siomos A, Therios I (2017) Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiol Biochem 112:173–182

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou VN, Dimassi-Theriou K, Therios I, Koukourikou- Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium×Prunus cerasus). Plant Physiol Biochem 61:162–168

    Article  CAS  PubMed  Google Scholar 

  • Schaefer M, Hardeland R (2009) The melatonin metabolite n1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J Pineal Res 46:49–52

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y et al (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shafi A, Gill T, Zahoor I, Ahuja PS, Sreenivasulu Y, Kumar S, Singh AK (2019) Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Bio Rep 46(2):1985–2002

    Article  CAS  Google Scholar 

  • Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, Ahuja PS, Singh AK (2017) Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol Biol Rep 35:504–518

    Article  CAS  Google Scholar 

  • Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF Arabidopsis thaliana 6-activated C-repeat- binding factor pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57:185–191

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen Y, Tan DX, Reiter RJ, Chan Z, He C (2015a) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59:102–108

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H et al (2015b) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015c) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59:334–342

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Reiter RJ, Tan DX, Chan Z (2015d) Indole-3-acetic acid inducible17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58:26–33

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Tan DX, Reiter RJ, Ye T, Yang F, Chan Z (2015e) Melatonin induces classA1 heat-shock factors (HSFA1s) and their possible involvement of thermos tolerance in Arabidopsis. J Pineal Res 58:335–342

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Tan DX, Reiter RJ, Chan Z (2015f) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.). J Pineal Res 59:120–131

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A et al (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system. Proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20:353

    Article  PubMed Central  CAS  Google Scholar 

  • Tal O, Haim A, Harel O, Gerchman Y (2011) Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J Exp Bot 62:1903–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan D, Reiter RJ, Manchester LC, Yan M, El-Sawi M et al (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S et al (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Mol 20:18886–18906

    Article  CAS  Google Scholar 

  • Tan DX, Manchester LC, Helton P, Reiter RJ (2007a) Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2:514–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signal Recep 9:137–159

    Article  CAS  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007b) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ et al (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution:relation to their biological functions. Int J Mol Sci 15:15858–15890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Li J, Li H (2015) Effects of exogenous melatonin on photosynthetic characteristics of eggplant (Solanum melongena L.) under cadmium stress. In: International Conference on Manufacturing Science and Engineering (ICMSE 2015)

    Google Scholar 

  • Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52:332–339

    Article  CAS  PubMed  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55:435–442

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q (2014) Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56:134–142

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016a) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Article  CAS  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 53:11

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, An B, Wei Y, Reiter RJ, Shi H, Luo H, He C (2016b) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren SX (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9:e93462–e93462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM et al (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Wu HH (2018) Plant salt tolerance and Na+ sensing and transport. Crop Sci Soci China 6:215–225

    Google Scholar 

  • Xu L, **ang G, Sun Q, Ni Y, ** Z, Gao S, Yao Y (2019) Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hort Res 6:114

    Article  CAS  Google Scholar 

  • Xu SC, He MD, Zhong M, Zhang YW, Wang Y (2010a) Melatonin protects against nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. J Pineal Res 49:86–94

    CAS  PubMed  Google Scholar 

  • Xu XD, Sun Y, Sun B, Zhang J, Guo XQ (2010b) Effects of exogenous melatonin on active oxygen metabolism of cucumber seedlings under high temperature stress. Ying Yong Sheng Tai Xue Bao 21:1295–1300

    CAS  PubMed  Google Scholar 

  • Yin Z, Lu J, Meng S, Liu Y, Mostafa I, Qi M, Li T (2019) Exogenous Mel improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J Plant Intera 14:453–463

    Article  CAS  Google Scholar 

  • Yu Y, Wang A, Li X, Kou M, Wang W et al (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+-ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci 9:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Cai J, Li J, Lu G, Li C et al (2018) Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integ Agri 17:328–335

    Article  CAS  Google Scholar 

  • Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Tong W, Song W (2019) Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20:709

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ et al (2014a) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017a) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhang J, Zeng B, Mao Y, Kong X, Wang X, Yang Y et al (2017b) Melatonin alleviates aluminum toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Func Plant Biol 44:961–968

    Article  CAS  Google Scholar 

  • Zhang L, Jia J, Xu Y, Wang Y, Hao J, Li T (2012) Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In-Vitro Cell Deve Biol Plant 48:275–282

    Article  CAS  Google Scholar 

  • Zhang N, Zhang HJ, Zhao B et al (2014b) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Sun Y, Liu Z, ** W, Sun Y (2017c) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res 62:e1240

    Article  Google Scholar 

  • Zhao G, Zhao Y, Yu X, Kiprotich F et al (2018) Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int J Mol Sci 19:1912–1931

    Article  PubMed Central  CAS  Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y et al (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Liu Z, Zhu L, Ma Z, Wang J, Zhu J (2016a) Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. Int J Mol Sci 17:1777

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou X, Zhao H, Cao K, Hu L, Du T, Baluška F et al (2016b) Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front Plant Sci 7:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafi, A., Singh, A.K., Zahoor, I. (2021). Melatonin: Role in Abiotic Stress Resistance and Tolerance. In: Aftab, T., Hakeem, K.R. (eds) Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_12

Download citation

Publish with us

Policies and ethics

Navigation