Log in

Investigating temporal variation in the apparent volume fraction measured by time-resolved laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In many time-resolved laser-induced incandescence (TiRe-LII) experiments, it is common practice to relate the intensity emitted by laser-heated nanoparticles to the detected LII signal through a factor (here called the intensity scaling factor, ISF) that includes the particle volume fraction and other parameters that may not be the focus of the analysis. While, in the absence of evaporation or sublimation, the ISF should theoretically remain constant with respect to time, recent multi-wavelength measurements show that, in reality, it may vary with both time and fluence. We consider four candidate effects that contribute to this behavior: particle annealing; polydispersity in the nanoparticle-size distribution; background luminosity due to emission from nanoparticles in the line-of-sight before and behind the probe volume; and the temporal resolution of the detector. We demonstrate these effects by simulating TiRe-LII data for in-flame soot at atmospheric pressure, using new simplified heat transfer and annealing models. Analysis of experimental signals collected from flame-generated soot at atmospheric pressure reveals trends in the ISF similar to those predicted by simulations. These temporal variations provide important insights that can help to diagnose problems in TiRe-LII experiments and improve TiRe-LII models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  2. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95–104 (1996)

    Article  ADS  Google Scholar 

  3. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021–2029 (2003)

    Article  ADS  Google Scholar 

  4. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355–382 (2006)

    Article  ADS  Google Scholar 

  5. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 623–636 (2014)

    Article  ADS  Google Scholar 

  6. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342–2344 (1995)

    Article  ADS  Google Scholar 

  7. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439–450 (2000)

    Article  Google Scholar 

  8. J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122, 277–291 (2016)

    Article  ADS  Google Scholar 

  9. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, J. Appl. Phys. 123, 095103 (2018)

    Article  ADS  Google Scholar 

  10. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, J. Heat Transf. 135, 052401 (2013)

    Article  Google Scholar 

  11. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709–717 (1997)

    Article  ADS  Google Scholar 

  12. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773–6785 (2005)

    Article  ADS  Google Scholar 

  13. P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, J. Opt. Soc. Am. A 35, 386–396 (2018)

    Article  ADS  Google Scholar 

  14. R. Mansmann, T.A. Sipkens, J. Menser, K.J. Daun, T. Dreier, C. Schulz, Appl. Phys. B 125, 126–146 (2019)

    Article  ADS  Google Scholar 

  15. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  16. C.M. Sorensen, Aerosol Sci. Technol. 35, 648–687 (2001)

    Article  ADS  Google Scholar 

  17. F. Liu, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 671–682 (2009)

    Article  ADS  Google Scholar 

  18. M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485–491 (1998)

    Article  Google Scholar 

  19. D.J. Bryce, N. Ladommatos, H. Zhao, Appl. Opt. 39, 5012–5022 (2000)

    Article  ADS  Google Scholar 

  20. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, P.J. Hadwin, Appl. Opt. 56, 8436–8445 (2017)

    Article  ADS  Google Scholar 

  21. P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Appl. Phys. B 122, 1–16 (2016)

    Article  ADS  Google Scholar 

  22. T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B 123, 14–30 (2017)

    Article  ADS  Google Scholar 

  23. T.A. Sipkens, Advances in the Modeling of Time-Resolved Laser-Induced Incandescence (PhD dissertation, University of Waterloo, 2018)

  24. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn et al., Appl. Phys. B 87, 503–521 (2007)

    Article  ADS  Google Scholar 

  25. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555–563 (1973)

    Article  Google Scholar 

  26. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657–669 (2009)

    Article  ADS  Google Scholar 

  27. Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Proc. Combust. Inst. 26, 2351–2358 (1996)

    Article  Google Scholar 

  28. E. Nordström, N.E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, P.E. Bengtsson, Proc. Combust. Inst. 35, 3707–3713 (2015)

    Article  Google Scholar 

  29. T.A. Sipkens, K.J. Daun, Opt. Express 25, 5684–5696 (2017)

    Article  ADS  Google Scholar 

  30. T.A. Sipkens, K.J. Daun: MATLAB tools for TiRe-LII fluence curves, figshare. (2017). https://doi.org/10.6084/m9.figshare.5513497.v1

  31. J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683–694 (2009)

    Article  ADS  Google Scholar 

  32. S. Kruse, P.R. Medwell, J. Beeckmann, H. Pitsch, Appl. Phys. B 124, 212–222 (2018)

    Article  ADS  Google Scholar 

  33. F. Liu, K.J. Daun, V. Beyer, G.J. Smallwood, D.A. Greenhalgh, Appl. Phys. B 87, 179–191 (2007)

    Article  ADS  Google Scholar 

  34. R.L. Vander Wal, M.Y. Choi, Carbon 37, 231–239 (1999)

    Article  Google Scholar 

  35. R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607–1616 (1998)

    Article  ADS  Google Scholar 

  36. B. Apicella, P. Pré, J.N. Rouzaud, J. Abrahamson, R.L. Wal, A. Ciajolo, A. Tregrossi, C. Russo, Combust. Flame 204, 13–22 (2019)

    Article  Google Scholar 

  37. F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B 120, 417–427 (2015)

    Article  ADS  Google Scholar 

  38. H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  39. E. Cenker, W.L. Roberts, Appl. Phys. B 123, 74–83 (2017)

    Article  ADS  Google Scholar 

  40. Tami C. Bond, Robert W. Bergstrom, Aerosol Sci. Technol. 40, 27–67 (2006)

    Article  ADS  Google Scholar 

  41. M. Saffaripour, K.P. Geigle, D.R. Snelling, G.J. Smallwood, K.A. Thomson, Appl. Phys. B 119, 621–642 (2015)

    Article  Google Scholar 

  42. YuV Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, B. Segall, J. Appl. Phys. 88, 4380–4388 (2000)

    Article  ADS  Google Scholar 

  43. J.A. Newell, D.D. Edie, E.L. Fuller, J. Appl. Polym. Sci. 60, 825–832 (1996)

    Article  Google Scholar 

  44. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Trans. 49, 777–788 (2006)

    Article  Google Scholar 

  45. K.J. Daun, B.J. Stagg, F. Liu, G.J. Smallwood, D.R. Snelling, Appl. Phys. B 87, 363–372 (2007)

    Article  ADS  Google Scholar 

  46. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 169–183 (2015)

    Article  ADS  Google Scholar 

  47. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383–395 (2006)

    Article  ADS  Google Scholar 

  48. H. Bladh, J. Johnsson, P.E. Bengtsson, Appl. Phys. B 90, 109–125 (2008)

    Article  ADS  Google Scholar 

  49. G. J. Smallwood: A Critique of Laser-Induced Incandescence for the Measurement of Soot (PhD dissertation, Cranfield University, 2008)

  50. S. Talebi Moghaddam, K.J. Daun, Appl. Phys. B 124, 159–172 (2018)

    Article  ADS  Google Scholar 

  51. R. Mansmann, T. Drier, C. Schulz, Appl. Opt. 56, 7849–7860 (2017)

    Article  ADS  Google Scholar 

  52. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  53. P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Appl. Phys. B 123, 114–128 (2017)

    Article  ADS  Google Scholar 

  54. S.K. Friedlander, C.S. Wang, J. Colloid Interface Sci. 22, 126–132 (1966)

    Article  ADS  Google Scholar 

  55. F.L. Román, J.A. White, S. Velasco, A. Mulero, J. Chem. Phys. 123, 124512 (2005)

    Article  ADS  Google Scholar 

  56. C.J. Shih, M.S. Strano, D. Blankschtein, Nat. Mater. 12, 866–869 (2013)

    Article  ADS  Google Scholar 

  57. Z.W. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, Proc. Combust. Inst. 35, 3673–3680 (2015)

    Article  Google Scholar 

  58. K.M. Watson, Ind. Eng. Chem. 35, 398–406 (1943)

    Article  Google Scholar 

  59. W.A. de Heer, D. Ugarte, Chem. Phys. Lett. 207, 480–486 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (CGS 355451, DG 356267) and the German Research Foundation (DFG) (SCHU1369/14 and /26). We would also like to thank Dr. Thomas Dreier for his encouragement and advice and Sina Talebi Moghaddam for useful discussions on related topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Sipkens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Laser-Induced Incandescence”, guest edited by Klaus Peter Geigle and Stefan Will.

Electronic supplementary material

Appendices

Appendix A: heat transfer model

The properties for the heat transfer model in this work were chosen close to the median of the range of values given in the literature previously, most notably from Ref. [24]. This model is chosen to increase the information entropy contained in the model by preventing overtuning to specific laboratory settings, particularly given the disparity of soot properties given in the literature (cf. the range of trajectories for the nanoparticle temperature shown in Ref. [24]. While this model lends itself particularly well to statistical analyses (consideration of which are the topic of future work), point estimates produced by such a model are also beneficial from an information entropy perspective. The values used in this work are summarized in Table 3.

Table 3 Spectroscopic and heat transfer model parameter values used in generating simulated signals and, excluding the nanoparticle diameter, for interpreting TiRe-LII signals

Several notes are also made here on the function forms chosen for ΔHv, pv, and mv. Above the melting point, we use the universal expression recently proposed by Román et al. [55]:

$$\Delta H_{\text{v}} = \Delta H_{\text{v,ref}} \exp \left[ {\left( {n - \beta_{\text{R}} } \right)\left( {\frac{{T_{\text{p}} - T_{\text{ref}} }}{{T_{\text{cr}} - T_{\text{ref}} }}} \right)} \right]\left( {\frac{{T_{\text{cr}} - T_{\text{p}} }}{{T_{\text{cr}} - T_{\text{ref}} }}} \right),$$
(35)

where ΔHv,ref and Tref are a reference latent heat of vaporization and temperature, n is the critical exponent, βR = 0.37 [55], and Tcr is the critical temperature. Below the melting temperature, we use a linear expression that closely fits the data in Leider et al. [25]. Based on the correlations provided by Leider et al. [25], we separate the changes in mv with temperature into three regimes: (i) low temperatures, where C1 is the dominant evaporated species, though not in significant quantities; (ii) beyond 1900 K where C3 becomes dominant; and (iii) finally, beyond 4500 K where the vapor becomes a mixture composed significantly of C3, C5, and C7. Accordingly, we model the molecular mass of the vapor using a sigmoid function, so that the transitions between the different regimes are smooth. Finally, the vapor pressure is evaluated using the Kelvin equation, which accounts for the enhanced surface energy due to curvature:

$$p_{\text{v}} = p_{\text{v,o}} \exp \left( {\frac{{4\gamma_{\text{s}} }}{{d_{\text{p}} \rho R_{\text{s}} T_{\text{p}} }}} \right),$$
(36)

where γs = 0.18 J/cm2 is the surface tension [56] and pv,o is the nominal vapor pressure above a bulk surface, given by the Clausius–Clapeyron equation:

$$p_{\text{v,o}} = p_{\text{v,ref}} \exp \left[ {\frac{{ - \Delta H_{\text{v,ref}} }}{R}\left( {\frac{1}{{T_{\text{p}} }} - \frac{1}{{T_{\text{ref}} }}} \right)} \right],$$
(37)

where pv,ref, Tref, and ΔHv,ref are reference values, in this case, different from those in Eq. (34). These quantities are generally consistent with the parameters of other TiRe-LII evaporation models presented by Michelsen et al. [24] and the original work of Leider et al. [25], although they predict slightly greater evaporation, and, consequently, steeper temperature decays, close to the laser pulse.

Appendix B: annealing model

The annealing model is based on the reducing sphere model of Butenko et al. [42] and assumes that graphitization initiates instantaneously over the primary particle surface. While this may not quantitatively represent the physics, it represents a simple model that accounts for the increased energy of the atoms at the surface, which makes it easier for the atoms to restructure. The transformation then progresses into the interior of the primary particle with a single rate, k. The transformed fraction of the individual primary particle X at any given time is described by the following [42]:

$$X = 1 - \left( {\frac{{d_{\text{p,t}} }}{{d_{\text{p}} }}} \right)^{3} ,$$
(38)

where dp,t is the diameter of the untransformed material at any time. It can then be shown that the rate of change in X is given by the following:

$$\frac{{{\text{d}}X}}{{{\text{d}}t}} = \frac{\text{d}}{{{\text{d}}t}}\left( {1 - \frac{{d_{\text{p,t}}^{3} }}{{d_{\text{p}}^{3} }}} \right) = - \frac{{3d_{\text{p,t}}^{2} }}{{d_{\text{p}}^{3} }}\frac{{{\text{d}}d_{\text{p,t}} }}{{{\text{d}}t}} = \frac{{3\left( {1 - X} \right)^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} }}{{d_{\text{p}} }}\frac{{{\text{d}}d_{\text{p,t}} }}{{{\text{d}}t}}.$$
(39)

The progression of the transformed phase is governed by the Arrhenius equation:

$$\frac{{{\text{d}}d_{\text{p,t}} }}{{{\text{d}}t}} = 2k = 2A_{0} \exp \left( { - \frac{{E_{\text{A}} }}{RT}} \right),$$
(40)

where EA is an activation energy and A0 is a pre-exponential factor. The activation energy is taken as EA = 400 kJ/mol, chosen on the lower end of the values reported in the literature (generally in the range of 400–1000 kJ/mol [43]), and the exponential prefactor is set to A0 = 1.0 × 105 s−1. These quantities bring the model into agreement with Michelsen’s model at high temperatures, where it is considered reliable, while predicting slower annealing (on the order of milliseconds to hours) at flame temperatures and low fluences, consistent with Refs. [39, 59]. The final form of the rate of change in X is, thus:

$$\frac{{{\text{d}}X}}{{{\text{d}}t}} = \frac{{6A_{0} \left( {1 - X} \right)^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} }}{{d_{\text{p}} }}\exp \left( { - \frac{{E_{\text{A}} }}{RT}} \right).$$
(41)

This form has the consequence that the rate of dX/dt is faster for smaller nanoparticles where there is less material to be transformed. The proposed model also allows for freezing of the transformation at values of X < 1 for moderate heating. We use X = 0 as an initial condition, as the annealing rate at flame conditions is assumed to be slow, and solve Eq. (40) using a fourth-order Runge–Kutta scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipkens, T.A., Menser, J., Mansmann, R. et al. Investigating temporal variation in the apparent volume fraction measured by time-resolved laser-induced incandescence. Appl. Phys. B 125, 140 (2019). https://doi.org/10.1007/s00340-019-7251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7251-7

Navigation