Log in

Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional “nuisance” model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  2. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  3. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007)

    Article  Google Scholar 

  4. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  5. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  6. K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Appl. Phys. B 87, 363 (2007)

    Article  ADS  Google Scholar 

  7. S.A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

  8. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    Article  ADS  Google Scholar 

  9. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104, 289 (2011)

    Article  ADS  Google Scholar 

  10. B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B 102, 173 (2011)

    Article  ADS  Google Scholar 

  11. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, J. Heat Transf. 135, 052401 (2013)

    Article  Google Scholar 

  12. C.F.J. Wu, Ann. Stat. 14, 1261 (1986)

    Article  MATH  Google Scholar 

  13. D. Calvetti, E. Somersalo, Introduction to Bayesian Scientific Computing (Springer, New York, 2008)

    MATH  Google Scholar 

  14. D. Snelling, G. Smallwood, I. Campbell, J. Medlock, Ö.L. Gülder, AGARD Proc. 598, 23 (1997)

    Google Scholar 

  15. F. Liu, K. Thomson, G. Smallwood, Appl. Phys. B 96, 671 (2009)

    Article  ADS  Google Scholar 

  16. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 27 (2006)

    Article  Google Scholar 

  17. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 623 (2014)

    Article  ADS  Google Scholar 

  18. T.A. Sipkens, N.R. Singh, K.J. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B 119, 561 (2015)

    Article  Google Scholar 

  19. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, New York, 2006)

    MATH  Google Scholar 

  20. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, Philadelhia, 2005)

    Book  MATH  Google Scholar 

  21. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer Science & Business Media, New York, 2006)

    MATH  Google Scholar 

  22. J. Liu, Monte Carlo Strategies in Scientific Computing (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  23. A.R. Coderre, K.A. Thomson, D.R. Snelling, M.R. Johnson, Appl. Phys. B 104, 175 (2011)

    Article  ADS  Google Scholar 

  24. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Article  Google Scholar 

  25. F. Liu, G.J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 111, 302 (2010)

    Article  ADS  Google Scholar 

  26. J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F.X. Ouf, A. Coppalle, J. Quant. Spectrosc. Radiat. Transf. 133, 374 (2014)

    Article  ADS  Google Scholar 

  27. R. Millikan, J. Opt. Soc. Am. 51, 698 (1961)

    Article  Google Scholar 

  28. A.I. Medalia, L.W. Richards, J. Colloid Interface Sci. 40, 233 (1972)

    Article  Google Scholar 

  29. W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969)

    Article  Google Scholar 

  30. J.D. Felske, T.T. Charampopoulos, H.S. Hura, Combust. Sci. Technol. 37, 263 (1984)

    Article  ADS  Google Scholar 

  31. G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 297 (2011)

    Article  ADS  Google Scholar 

  32. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  33. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)

    Article  Google Scholar 

  34. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. A 430, 577 (1990)

    Article  ADS  Google Scholar 

  35. B. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993)

    Article  Google Scholar 

  36. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 122, 517 (2000)

    Article  Google Scholar 

  37. U.O. Köylü, G.M. Faeth, J. Heat Transf. 118, 415 (1996)

    Article  Google Scholar 

  38. E.T. Jaynes, IEEE Trans. Syst. Sci. Cybern. 4, 227 (1968)

    Article  MATH  Google Scholar 

  39. E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  41. U. Toussaint, Rev. Mod. Phys. 83, 943 (2011)

    Article  ADS  Google Scholar 

  42. F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 273 (2011)

    Article  ADS  Google Scholar 

  43. D. Snelling, K.A. Thomson, G.J. Smallwood, Ö. Gülder, Appl. Opt. 38, 2478 (1999)

    Article  ADS  Google Scholar 

  44. J.P. Kaipio, E. Somersalo, J. Comput. Appl. Math. 198, 493 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Hadwin.

Appendix A: Marginalization algorithm

Appendix A: Marginalization algorithm

Here we present the pseudo-algorithm for computing the posterior density:

Discretise the expected range of soot volume fraction and temperature, \(f_{\text{v}}^{1} ,f_{\text{v}}^{2} , \ldots ,f_{\text{v}}^{n}\) and T 1, T 2, , T m.

figure a

Multiply the computed π(f v, T p|v λ ) by a constant, so when integrated over all possible values of f v and T p, it integrates to unity.

In the above algorithm, the prior density of E(m λ ) (π pri) is a delta distribution when a fixed value is used as the absorption parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadwin, P.J., Sipkens, T.A., Thomson, K.A. et al. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements. Appl. Phys. B 122, 1 (2016). https://doi.org/10.1007/s00340-015-6287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6287-6

Keywords

Navigation