Log in

Picosecond laser surface micropatterning of ceramics by optical fiber induction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Parallel microgrooves and mesh structure with a line width of about 16 μm, which is much smaller than the diameter of the laser focus spot of 50 μm, are fabricated on Al2O3 ceramic surfaces by picosecond laser patterning with optical fiber induction. The patterned grooves are of high quality without burr, recasting or thermally induced cracks. Grain refinement of the groove surfaces caused by the rapid condensation and redeposition during picosecond laser irradiation with optical fiber induction improved the smoothness and mechanical strength of the grooves. Different patterns can be fabricated by adjusting the optical fiber layout, which is independent of the laser scanning direction. The regions etched by the laser are kept in near-field contact with the optical fibers when the laser beam passes through the fibers and irradiates the ceramic surface. This results in localized field enhancement between the transparent optic fiber and ceramic surface, which produces the precise microgrooves. The developed technique allows high-resolution micromachining of the surfaces of hard and brittle ceramic-type materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.N. Samant, N.B. Dahotre, J. Eur. Ceram. Soc. 29, 969–993 (2009)

    Article  Google Scholar 

  2. Y.H. Liang, S.P. Dutta, Technovation 21, 61–65 (2001)

    Article  Google Scholar 

  3. R. Nagai, T. Honma, T. Komatsu, J. Am. Ceram. Soc. 93(3), 658–661 (2010)

    Article  Google Scholar 

  4. A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, K. Zimmer, Opt. Laser Technol. 44, 1753–1757 (2012)

    Article  ADS  Google Scholar 

  5. I. Etsion, J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  6. J.D. Majumdar, I. Manna, Sadhana 28(3–4), 495–562 (2003)

    Article  Google Scholar 

  7. P.E. Koziol, A.J. Antończak, P. Szymczyk, B. Stepak, K.M. Abramski, Appl. Surf. Sci. 287, 165–171 (2013)

    Article  ADS  Google Scholar 

  8. D. Dhupal, B. Doloi, B. Bhattacharyya, Int. J. Mach. Tools Manuf. 48, 236–248 (2008)

    Article  Google Scholar 

  9. A.J. Harris, B. Vaughan, J.A. Yeomans, P.A. Smith, S.T. Burnage, J. Eur. Ceram. Soc. 33, 2925–2934 (2013)

    Article  Google Scholar 

  10. M. Wakuda, Y. Yamauchi, S. Kanzaki, Y. Yasuda, Wear 254, 356–363 (2003)

    Article  Google Scholar 

  11. L. Hao, J. Lawrence, K.S. Chian, J. Mater. Sci. Mater. Med. 16, 719–726 (2005)

    Article  Google Scholar 

  12. X. Wang, J.D. Shephard, F.C. Dear, D.P. Hand, J. Am. Ceram. Soc. 91(2), 391–397 (2008)

    Article  Google Scholar 

  13. J.P. Parry, J.D. Shephard, F.C. Dear, N. Jones, N. Weston, D.P. Hand, Int. J. Appl. Ceram. Technol. 5(3), 249–257 (2008)

    Article  Google Scholar 

  14. M. Roy, A. Bandyopadhyay, S. Bose, J. Am. Ceram. Soc. 91(11), 3517–3521 (2008)

    Article  Google Scholar 

  15. B. Klimt, Laser Tech. J. 1, 40–43 (2007)

    Article  Google Scholar 

  16. F. Dausinger, H. Hügel, V. Konov, Proc. SPIE 5147, 106–115 (2003)

    Article  ADS  Google Scholar 

  17. C. Momma, S. Nolte, B.N. Chichkov, F.V. Alvensleben, A. Tünnermann, Appl. Surf. Sci. 109(110), 15–19 (1997)

    Article  ADS  Google Scholar 

  18. W. Kautek, J. Krüger, Proc. SPIE 2207, 600–611 (1994)

    Article  ADS  Google Scholar 

  19. T. Herrmann, B. Klimt, 2005 OSA/PhAST, pThB2 (2005)

  20. K.M. Du, S. Brüning, A. Gillner, Proc. SPIE 8244, 82440P1–10 (2012)

  21. S.M. Pimenov, I.I. Vlasov, A.A. Khomich, B. Neuenschwander, M. Muralt, V. Romano, Appl. Phys. A 105, 673–677 (2011)

    Article  ADS  Google Scholar 

  22. A. Pena, Z.B. Wang, D. Whitehead, L. Li, Appl. Phys. A 101, 287–295 (2010)

    Article  ADS  Google Scholar 

  23. Y.Q. Zhou, T. Shao, L. Yin, Laser Phys. 19(5), 1061–1066 (2009)

    Article  ADS  Google Scholar 

  24. A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, P.F. Nealey, J. Cell Sci. 116(10), 1881–1892 (2003)

    Article  Google Scholar 

  25. K. Weingarten, Laser Tech. J. 1, 51–54 (2009)

    Article  Google Scholar 

  26. D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339, 49–63 (2004)

    Article  ADS  Google Scholar 

  27. O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, Appl. Phys. Lett. 79, 1366–1368 (2001)

    Article  ADS  Google Scholar 

  28. N. Arnold, Appl. Surf. Sci. 208–209, 15–22 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China (51275011) and New Century Excellent Talents in University (NCET-10-0007). Acknowledgment is also made to Scientific Research Program of Bei**g Municipal Commission of Education (KZ20131005005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ji, L., Hu, Y. et al. Picosecond laser surface micropatterning of ceramics by optical fiber induction. Appl. Phys. A 119, 1061–1067 (2015). https://doi.org/10.1007/s00339-015-9068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9068-5

Keywords

Navigation