Log in

Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sanchez, H. Arribart, M.M.G. Guille, Nat. Mater. 4, 277–288 (2005)

    Article  ADS  Google Scholar 

  2. A. Parker, H. Townley, Nat. Nanotechnol. 2, 347–53 (2007)

    Article  ADS  Google Scholar 

  3. Z. Vértesy, Zs. Bálint, K. Kertész, J.P. Vigneron, V. Lousse, L.P. Biró, J. Microsc. 224, 108–110 (2006)

    Article  MathSciNet  Google Scholar 

  4. P. Vukusic, Physicist 41, 9–14 (2004)

    Google Scholar 

  5. P. Vukusic, Phys. Today 59, 82–83 (2006)

    Article  Google Scholar 

  6. P. Lalanne, G.M. Morris, Nanotechnology 8, 53–56 (1997)

    Article  ADS  Google Scholar 

  7. S.H. Zaidi, C. Matzke, L. Koltunski, K. DeZetter, in Conference Record of the IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, US, 2005, pp. 1145–1148

  8. S.J. Wilson, M.C. Hutley, Opt. Acta 29, 993–1009 (1982)

    ADS  Google Scholar 

  9. M.E. Motamedi, W.H. Southwell, W.J. Gunning, Appl. Opt. 31, 4371–4376 (1992)

    Article  ADS  Google Scholar 

  10. K. Hadobas, S. Kirsch, A. Carl, M. Acet, E.F. Wassermann, Nanotechnology 11, 161–164 (2000)

    Article  ADS  Google Scholar 

  11. E.B. Grann, M.G. Moharam, D.A. Pommet, J. Opt. Soc. Am. A 12, 333–339 (1995)

    Article  ADS  Google Scholar 

  12. P. Vukusic, J.R. Sambles, C.R. Lawrence, Proc. R. Soc. Lond. B, Biol. Sci. 271, 237–239 (2004)

    Article  Google Scholar 

  13. Z. Yu, H. Gao, W. Wu, H. Ge, S.Y. Chou, J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2874–2877 (2003)

    Article  ADS  Google Scholar 

  14. C.J.M. Van Rijn, J. Microlithogr. Microfabr. Microsyst. 5, 011012 (2006)

    Article  ADS  Google Scholar 

  15. C.-H. Sun, P. Jiang, B. Jiang, Appl. Phys. Lett. 92, 061112 (2008)

    Article  ADS  Google Scholar 

  16. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, M. Yamaguchi, Prog. Photovolt. 15, 415–423 (2007)

    Article  Google Scholar 

  17. A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, L. Pavesi, J. Appl. Phys. 102, 034313 (2007)

    Article  ADS  Google Scholar 

  18. S. Kwon, W. Chang, S. Jeong, in Proceedings of SPIE, Nara, Japan, 2004, pp. 57–61

  19. J.-H. Klein-Wiele, J. Bekesi, J. Ihlemann, P. Simon, in Proceedings of SPIE, St. Petersburg, Russian Federation, 2004, pp. 139–146

  20. Y. Kanamori, K. Hane, H. Sai, H. Yugami, Appl. Phys. Lett. 78, 142–143 (2001)

    Article  ADS  Google Scholar 

  21. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi, Thin Solid Films 516, 6791–6795 (2008)

    Article  ADS  Google Scholar 

  22. A. Fisher, M. Kuemmel, M. Jarn, M. Linden, C. Boissiere, L. Nicole, C. Sanchez, D. Grosso, Small 2, 569–574 (2006)

    Article  Google Scholar 

  23. H.L. Chen, S.Y. Chuang, C.H. Lin, Y.H. Lin, Opt. Express 15, 14793–14803 (2007)

    Article  ADS  Google Scholar 

  24. H.L. Chen, K.T. Huang, C.H. Lin, W.Y. Wang, W. Fan, Microelectron. Eng. 84, 750–754 (2007)

    Article  Google Scholar 

  25. Z.B. Wang, M.H. Hong, B.S. Luk’yanchuk, Y. Lin, Q.F. Wang, T.C. Chong, J. Appl. Phys. 96, 6845–6850 (2004)

    Article  ADS  Google Scholar 

  26. E.W. Rothe, R.J. Baird, C.W. Manke, R. Piparia, Nanotechnology 19, 165301 (2008)

    Article  ADS  Google Scholar 

  27. R. Piparia, E.W. Rothe, R.J. Baird, Appl. Phys. Lett. 89, 223113 (2006)

    Article  ADS  Google Scholar 

  28. S.M. Huang, Z. Sun, Y.F. Lu, Nanotechnology 18, 025302 (2007)

    Article  ADS  Google Scholar 

  29. Z.B. Wang, W. Guo, A. Pena, D.J. Whitehead, B.S. Luk’yanchuk, L. Li, Z. Liu, Y. Zhou, M.H. Hong, Opt. Express 16, 19706–19711 (2008)

    Article  ADS  Google Scholar 

  30. D.R. Halfpenny, D.M. Kane, J. Appl. Phys. 86, 6641–6646 (1999)

    Article  ADS  Google Scholar 

  31. D.M. Kane, D.R. Halfpenny, J. Appl. Phys. 87, 4548–4552 (2000)

    Article  ADS  Google Scholar 

  32. Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, Opt. Commun. 161, 6–12 (1999)

    Article  ADS  Google Scholar 

  33. B.S. Luk’yanchuk, Y.W. Zheng, Y.F. Lu, in Proceedings of SPIE, USA, 2000, pp. 576–587

  34. M. Mosbacher, H.J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, Appl. Phys. A 72, 41–44 (2001)

    Article  ADS  Google Scholar 

  35. H.J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, J. Microsc. 202, 129–135 (2001)

    Article  MathSciNet  Google Scholar 

  36. K. Piglmayer, R. Denk, D. Bauerle, Appl. Phys. Lett. 80, 4693–4695 (2002)

    Article  ADS  Google Scholar 

  37. Y. Lu, S.C. Chen, Nanotechnology 14, 505–508 (2003)

    Article  ADS  Google Scholar 

  38. B.S. Luk’yanchuk, N. Arnold, S.M. Huang, Z.B. Wang, M.H. Hong, Appl. Phys. A 77, 209–215 (2003)

    ADS  Google Scholar 

  39. Z.B. Wang, N. Joseph, L. Li, B.S. Luk’yanchuk, J. Mech. Eng. Sci. 224, 1113–1127 (2009). doi:10.1243/09544062JMES176

    Google Scholar 

  40. C.M. Othon, A. Laracuente, H.D. Ladouceur, B.R. Ringeisen, Appl. Surf. Sci. 255, 3407–3413 (2008)

    Article  ADS  Google Scholar 

  41. M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, J. Appl. Phys. 106 (2009)

  42. F. Hubenthal, R. Morarescu, L. Englert, L. Haag, T. Baumert, F. Trager, Appl. Phys. Lett. 95 (2009)

  43. R. Tsu, R.T. Hodgson, T. Teh Yu, J.E. Baglin, Phys. Rev. Lett. 42, 1356–1358 (1979)

    Article  ADS  Google Scholar 

  44. A. Kiani, K. Venkatakrishnan, B. Tan, Opt. Express 17, 16518–16526 (2009)

    Article  ADS  Google Scholar 

  45. Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, Y. Izawa, Jpn. J. Appl. Phys. 45, 5793–5794 (2006)

    Article  ADS  Google Scholar 

  46. M. Pervolaraki, P.E. Dyer, P. Monk, Appl. Phys. A 79(4–6), 849–854 (2004)

    ADS  Google Scholar 

  47. C. Tai-Chang, R.B. Darling, J. Mater. Process Technol. 169, 214–218 (2005)

    Article  Google Scholar 

  48. J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo, J. Appl. Phys. 88, 1638–1649 (2000)

    Article  ADS  Google Scholar 

  49. D. Bäuerle, Laser Processing and Chemistry (Springer, Heidelberg, 2000)

    Google Scholar 

  50. W. Guo, Z.B. Wang, L. Li, D.J. Whitehead, B.S. Luk’yanchuk, Z. Liu, Appl. Phys. Lett. 90, 243101 (2007)

    Article  ADS  Google Scholar 

  51. F. Micheron, Mol. Cryst. Liq. Cryst. 446, 255–259 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pena, A., Wang, Z., Whitehead, D. et al. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser. Appl. Phys. A 101, 287–295 (2010). https://doi.org/10.1007/s00339-010-5819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5819-5

Keywords

Navigation