Log in

Visceral obesity and sarcopenia as predictors of efficacy and hematological toxicity in patients with metastatic breast cancer treated with CDK 4/6 inhibitors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate whether visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle area (SMA) index are predictive for efficacy and hematological toxicity in ER + HER2—metastatic breast cancer (BC) patients who received CDK 4/6 inhibitors.

Methods

This retrospective cohort study analyzed 52 patients who were treated with CDK 4/6 inhibitors between January 2018 and February 2021. The values of VAT, SAT, SMA indices and hematological parameters were noted before the start, at the third and sixth months of this treatment. The skeletal muscle area (SMA) and adipose tissue measurements were calculated at the level of the third lumbar vertebra. A SMA-index value of <40 cm2/m2 was accepted as the threshold value for sarcopenia.

Results

Patients with sarcopenia had a worse progression-free survival (PFS) compared to patients without sarcopenia (19.6 vs. 9.0 months, p = 0.005). Patients with a high-VAT-index had a better PFS (20.4 vs. 9.3 months, p = 0.033). Only the baseline low-SMA- index (HR: 3.89; 95% CI: 1.35–11.25, p = 0.012) and baseline low-VAT-index (HR: 2.15; 95% CI: 1.02–4.53, p = 0.042) had significantly related to poor PFS in univariate analyses. The low-SMA-index was the only independent factor associated with poor PFS (HR: 3.99; 95% CI: 1.38–11.54, p = 0.011). No relationship was observed between body composition parameters and grade 3–4 hematological toxicity.

Conclusion

The present study supported the significance of sarcopenia and low visceral adipose tissue as potential early indicators of poor PFS in patients treated with CDK 4/6 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [KBY], upon reasonable request.

References

  1. Deluche E, Leobon S, Desport JC, Venat-Bouvet L, Usseglio J, Tubiana-Mathieu N (2018) Impact of body composition on outcome in patients with early breast cancer. Support Care Cancer 26:861–868. https://doi.org/10.1007/s00520-017-3902-6

    Article  PubMed  Google Scholar 

  2. Chen GC, Chen SJ, Zhang R, Hidayat K, Qin JB, Zhang YS, Qin LQ (2016) Central obesity and risks of pre- and postmenopausal breast cancer: a dose-response meta-analysis of prospective studies. Obes Rev 17:1167–1177. https://doi.org/10.1111/obr.12443

    Article  PubMed  Google Scholar 

  3. Yerushalmi R, Dong B, Chapman JW, Goss PE, Pollak MN, Burnell MJ, Levine MN, Bramwell VHC, Pritchard KI, Whelan TJ, Ingle JN, Shepherd LE, Parulekar WR, Han L, Ding K, Gelmon KA (2017) Impact of baseline BMI and weight change in CCTG adjuvant breast cancer trials. Ann Oncol 28:1560–1568. https://doi.org/10.1093/annonc/mdx152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, Navarro Rosenblatt D, Thune I, Vieira R, Norat T (2014) Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25:1901–1914. https://doi.org/10.1093/annonc/mdu042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho WK, Choi DH, Park W, Cha H, Nam SJ, Kim SW, Lee JE, Yu J, Im YH, Ahn JS, Park YH, Kim JY, Ahn S (2018) Effect of body mass index on survival in breast cancer patients according to subtype, metabolic syndrome, and treatment. Clin Breast Cancer 18:e1141–e1147. https://doi.org/10.1016/j.clbc.2018.04.010

    Article  PubMed  Google Scholar 

  6. Zewenghiel L, Lindman H, Valachis A (2018) Impact of body mass index on the efficacy of endocrine therapy in patients with metastatic breast cancer-a retrospective two-center cohort study. Breast 40:136–140. https://doi.org/10.1016/j.breast.2018.05.005

    Article  PubMed  Google Scholar 

  7. Trestini I, Carbognin L, Monteverdi S, Zanelli S, De Toma A, Bonaiuto C, Nortilli R, Fiorio E, Pilotto S, Di Maio M, Gasbarrini A, Scambia G, Tortora G, Bria E (2018) Clinical implication of changes in body composition and weight in patients with early-stage and metastatic breast cancer. Crit Rev Oncol Hematol 129:54–66. https://doi.org/10.1016/j.critrevonc.2018.06.011

    Article  PubMed  Google Scholar 

  8. Slamon DJ, Neven P, Chia S, Jerusalem G, De Laurentiis M, Im S, Petrakova K, Valeria Bianchi G, Martín M, Nusch A, Sonke GS, De la Cruz-Merino L, Beck JT, Ji Y, Wang C, Deore U, Chakravartty A, Zarate JP, Taran T, Fasching PA (2021) Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival. Ann Oncol 32:1015–1024. https://doi.org/10.1016/j.annonc.2021.05.353

    Article  CAS  PubMed  Google Scholar 

  9. Johnston S, Martin M, Di Leo A, Im SA, Awada A, Forrester T, Frenzel M, Hardebeck MC, Cox J, Barriga S, Toi M, Iwata H, Goetz MP (2019) MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 5:5. https://doi.org/10.1038/s41523-018-0097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanse EA, Mashek DG, Becker JR, Solmonson AD, Mullany LK, Mashek MT, Towle HC, Chau AT, Albrecht JH (2012) Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α. Cell Cycle 11:2681–2690. https://doi.org/10.4161/cc.21019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iqbal NJ, Lu Z, Liu SM, Schwartz GJ, Chua S Jr, Zhu L (2018) Cyclin-dependent kinase 4 is a preclinical target for diet-induced obesity. JCI insight 3:e123000. https://doi.org/10.1172/jci.insight.123000

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou X, Zhang Y, Li W, Hu AJ, Luo C, Zhou W, Hu JK, Daniele SG, Wang J, Sheng J, Fan Y, Greenberg AS, Farmer SR, Hu MG (2018) CDK6 inhibits white to beige fat transition by suppressing RUNX1. Nat Commun 9:1023. https://doi.org/10.1038/s41467-018-03451-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caan BJ, Meyerhardt JA, Kroenke CH, Alexeeff S, **ao J, Weltzien E, Feliciano EC, Castillo AL, Quesenberry CP, Kwan ML, Prado CM (2017) Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS study). Cancer Epidemiol Biomarkers Prev 26:1008–1015. https://doi.org/10.1158/1055-9965.EPI-17-0200

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yip C, Dinkel C, Mahajan A, Siddique M, Cook GJ, Goh V (2015) Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging 6:489–497. https://doi.org/10.1007/s13244-015-0414-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thibault R, Genton L, Pichard C (2012) Body composition: why, when and for who? Clin Nutr 31:435–447. https://doi.org/10.1016/j.clnu.2011.12.011

    Article  PubMed  Google Scholar 

  16. Caan BJ, Cespedes Feliciano EM, Kroenke CH (2018) The importance of body composition in explaining the overweight paradox in cancer—counterpoint. Cancer Res 78:1906–1912. https://doi.org/10.1158/0008-5472.CAN-17-3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC (2018) Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 8:11369. https://doi.org/10.1038/s41598-018-29825-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vangelov B, Bauer J, Kotevski D, Smee RI (2022) The use of alternate vertebral levels to L3 in computed tomography scans for skeletal muscle mass evaluation and sarcopenia assessment in patients with cancer: a systematic review. Br J Nutr 127:722–735. https://doi.org/10.1017/S0007114521001446

    Article  CAS  PubMed  Google Scholar 

  19. Bahat G, Turkmen BO, Aliyev S, Catikkas NM, Bakir B, Karan MA (2021) Cut-off values of skeletal muscle index and psoas muscle index at L3 vertebra level by computerized tomography to assess low muscle mass. Clin Nutr 40:4360–4365. https://doi.org/10.1016/j.clnu.2021.01.010

    Article  PubMed  Google Scholar 

  20. Chindapasirt J (2015) Sarcopenia in cancer patients. Asian Pac J Cancer Prev 16:8075–8077. https://doi.org/10.7314/apjcp.2015.16.18.8075

    Article  PubMed  Google Scholar 

  21. Pamoukdjian F, Bouillet T, Lévy V, Soussan M, Zelek L, Paillaud E (2018) Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 37:1101–1113. https://doi.org/10.1016/j.clnu.2017.07.010

    Article  PubMed  Google Scholar 

  22. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, Mackey JR, Koski S, Pituskin E, Sawyer MB (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15:2920–2926. https://doi.org/10.1158/1078-0432.CCR-08-2242

    Article  CAS  PubMed  Google Scholar 

  23. Deluche E, Lachatre D, Di Palma M, Simon H, Tissot V, Vansteene D, Meingan P, Mohebi A, Lenczner G, Pigneur F, Goldwasser F, Raynard B; SCAN Study Group (2022) Is sarcopenia a missed factor in the management of patients with metastatic breast cancer? Breast 61:84–90. https://doi.org/10.1016/j.breast.2021.12.014

  24. Çağlayan D, Kocak MZ, Geredeli C, Tatli AM, Karakurt Eryılmaz M, Göksu SS, Araz M, Artaç M (2022) The effect of BMI on the outcomes of CDK 4/6 inhibitor therapy in HR-positive metastatic breast cancer patients. J Clin Oncol 40:e13010. https://doi.org/10.1200/JCO.2022.40.16_suppl.e13010

    Article  Google Scholar 

  25. Artac M, Cağlayan D, Koçak M, Geredeli C, Tatli A, Goksu SS, Eryılmaz MK, Araz M (2022) The impact of body mass index (BMI) on the progression-free survival of CDK4/6 inhibitors in metastatic breast cancer patients (MBC). Ann Oncol 33:S644–S645. https://doi.org/10.1016/j.annonc.2022.07.274

    Article  Google Scholar 

  26. Franzoi MA, Eiger D, Ameye L, Ponde N, Caparica R, De Angelis C, Brandão M, Desmedt C, Di Cosimo S, Kotecki N, Lambertini M, Awada A, Piccart M, Azambuja E (2021) Clinical implications of body mass index in metastatic breast cancer patients treated with abemaciclib and endocrine therapy. J Nat Cancer Inst 113:462–470. https://doi.org/10.1093/jnci/djaa116

    Article  CAS  PubMed  Google Scholar 

  27. Patel R, Li Z, Zimmerman BS, Fink MY, Wells JD, Zhou X, Ayers K, Redfern A, Newman S, Schadt E, Oh WK, Chen R, Tiersten A (2022) Impact of body mass index on the efficacy of aromatase inhibitors in patients with metastatic breast cancer. Breast Cancer Res Treat 192:313–319. https://doi.org/10.1007/s10549-021-06504-0

    Article  CAS  PubMed  Google Scholar 

  28. Franzoi MA, Vandeputte C, Eiger D, Caparica R, Brandão M, De Angelis C, Hendlisz A, Awada A, Piccart M, de Azambuja E (2020) Computed tomography-based analyses of baseline body composition parameters and changes in breast cancer patients under treatment with CDK 4/6 inhibitors. Breast Cancer Res Treat 181:199–209. https://doi.org/10.1007/s10549-020-05617-2

    Article  CAS  PubMed  Google Scholar 

  29. Kripa E, Rizzo V, Galati F, Moffa G, Cicciarelli F, Catalano C, Pediconi F (2022) Do body composition parameters correlate with response to targeted therapy in ER+/HER2- metastatic breast cancer patients? Role of sarcopenia and obesity. Front Oncol 12:987012. https://doi.org/10.3389/fonc.2022.987012

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park HJ, Shin Y, Park J, Kim H, Lee IS, Seo DW, Huh J, Lee TY, Park T, Lee J, Kim KW (2020) Development and validation of a deep learning system for segmentation of abdominal muscle and fat on computed tomography. Korean J Radiol 21:88–100. https://doi.org/10.3348/kjr.2019.0470

    Article  PubMed  Google Scholar 

  31. Park J, Gil JR, Shin Y, Won SE, Huh J, You MW, Park HJ, Sung YS, Kim KW (2019) Reliable and robust method for abdominal muscle mass quantification using CT/MRI: an explorative study in healthy subjects. PLoS ONE 14:e0222042. https://doi.org/10.1371/journal.pone.0222042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murray TE, Williams D, Lee MJ (2017) Osteoporosis, obesity, and sarcopenia on abdominal CT: a review of epidemiology, diagnostic criteria, and management strategies for the reporting radiologist. Abdom Radiol (NY) 42:2376–2386. https://doi.org/10.1007/s00261-017-1124-5

    Article  PubMed  Google Scholar 

  33. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259. https://doi.org/10.1158/1078-0432.CCR-04-0713

    Article  CAS  PubMed  Google Scholar 

  34. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE (2014) Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10:455–465. https://doi.org/10.1038/nrendo.2014.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32:550–570. https://doi.org/10.1210/er.2010-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, Ishigami E, Masuda T, Miyazaki M (2016) Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med 5:41–48. https://doi.org/10.1002/cam4.571

    Article  PubMed  Google Scholar 

  37. Schapira DV, Clark RA, Wolff PA, Jarrett AR, Kumar NB, Aziz NM (1994) Visceral obesity and breast cancer risk. Cancer 74:632–639. https://doi.org/10.1002/1097-0142(19940715)74:2%3c632::aid-cncr2820740215%3e3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  38. Kwon MR, Ko ES, Park MS, Jeong WK, Hwang NY, Kim JH, Lee JE, Kim SW, Yu JH, Han BK, Ko EY, Choi JS, Park KW (2022) Impact of skeletal muscle loss and visceral obesity measured using serial CT on the prognosis of operable breast cancers in asian patients. Korean J Radiol 23:159–171. https://doi.org/10.3348/kjr.2020.1475

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ritter A, Friemel A, Fornoff F, Adjan M, Solbach C, Yuan J, Louwen F (2015) Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget 6:34475–34493. https://doi.org/10.18632/oncotarget.5922

  40. Donohoe CL, Doyle SL, Reynolds JV (2011) Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr 3:1–13. https://doi.org/10.1186/1758-5996-3-12

    Article  Google Scholar 

  41. Van Kruijsdijk RC, Van Der Wall E, Visseren FL (2009) Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 18:2569–2578. https://doi.org/10.1158/1055-9965.EPI-09-0372

    Article  CAS  PubMed  Google Scholar 

  42. Bousquenaud M, Fico F, Solinas G, Rüegg C, Santamaria-Martínez A (2018) Obesity promotes the expansion of metastasis-initiating cells in breast cancer. Breast Cancer Res 20:104. https://doi.org/10.1186/s13058-018-1029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Osman MA, Hennessy BT (2015) Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol 9:105–112. https://doi.org/10.4137/CMO.S32812

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gevorgyan A, Bregni G, Galli G, Ganzinelli M, Martinetti A, Lo Vullo S, Mariani L, Festinese F, Sottotetti E, de Braud F, Di Cosimo S (2016) Body mass index and clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer. Tumori 102:e11–e14. https://doi.org/10.5301/tj.5000515

    Article  CAS  PubMed  Google Scholar 

  45. Pizzuti L, Natoli C, Gamucci T, Mauri M, Sergi D, Di Lauro L, Paoletti G, Ruggeri E, Iezzi L, Sperduti I, Mentuccia L, Fabbri A, Maugeri-Saccà M, Moscetti L, Barba M, Vici P (2017) Anthropometric, clinical and molecular determinants of treatment outcomes in postmenopausal, hormone receptor positive metastatic breast cancer patients treated with fulvestrant: results from a real word setting. Oncotarget 8:69025–69037. https://doi.org/10.18632/oncotarget.16982

  46. Rier HN, Jager A, Sleijfer S, van Rosmalen J, Kock MCJM, Levin MD (2018) Changes in body composition and muscle attenuation during taxane-based chemotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat 168:95–105. https://doi.org/10.1007/s10549-017-4574-0

    Article  CAS  PubMed  Google Scholar 

  47. Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A (2021) Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: similarities and differences. Drugs 81:317–331. https://doi.org/10.1007/s40265-020-01461-2

    Article  CAS  PubMed  Google Scholar 

  48. Petrelli F, Ghidini A, Pedersini R, Cabiddu M, Borgonovo K, Parati MC, Ghilardi M, Amoroso V, Berruti A, Barni S (2019) Comparative efficacy of palbociclib, ribociclib and abemaciclib for ER+ metastatic breast cancer: an adjusted indirect analysis of randomized controlled trials. Breast Cancer Res Treat 174:597–604. https://doi.org/10.1007/s10549-019-05133-y

    Article  CAS  PubMed  Google Scholar 

  49. Livneh E, Shimon T, Bechor E, Doki Y, Schieren I, Bernard I (1996) Linking protein kinase C to the cell cyele: ectopic expression of PKCll NIH3T3 cells alters the expression of cyelins and Cdk inhibitors and induces adipogenesis. Oncogene 12:1545–1555

    CAS  PubMed  Google Scholar 

  50. Inoue N, Yahagi N, Yamamoto T, Ishikawa M, Watanabe K, Matsuzaka T, Nakagawa Y, Takeuchi Y, Kobayashi K, Takahashi A, Suzuki H, Hasty AH, Toyoshima H, Yamada N, Shimano H (2008) Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283:21220–21229. https://doi.org/10.1074/jbc.M801824200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shachar SS, Williams GR, Muss HB, Nishijima TF (2016) Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer 57:58–67. https://doi.org/10.1016/j.ejca.2015.12.030

    Article  PubMed  Google Scholar 

  52. Peterson SJ, Mozer M (2017) Differentiating sarcopenia and cachexia among patients with cancer. Nutr Clin Pract 32:30–39. https://doi.org/10.1177/0884533616680354

    Article  PubMed  Google Scholar 

  53. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH (2018) Cancer-associated cachexia. Nat Rev Dis Primers 4:17105. https://doi.org/10.1038/nrdp.2017.105

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the ICMJE authorship criteria. All authors have seen and approved the final version of the manuscript and contributed significantly to the work. Material preparation, data collection and analysis were performed by KBY, OS, and OY. The first draft of the manuscript was written by KBY, OS and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Kadriye Bir Yücel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was approved by the institutional ethics committee (date: March 21, 2023, no: 05) and conducted in accordance with the related privacy statements and applicable regulatory requirements.

Consent to participate

This study was conducted in accordance with the provisions of the Declaration of Helsinki and its later amendments. Written informed consent was obtained from all patients.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yücel, K.B., Aydos, U., Sütcüoglu, O. et al. Visceral obesity and sarcopenia as predictors of efficacy and hematological toxicity in patients with metastatic breast cancer treated with CDK 4/6 inhibitors. Cancer Chemother Pharmacol 93, 497–507 (2024). https://doi.org/10.1007/s00280-024-04641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-024-04641-z

Keywords

Navigation