Log in

Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the random data problem for 3D, defocusing, cubic nonlinear Schrödinger equation in \(H_x^s({{\mathbb {R}}}^3)\) with \(s<\frac{1}{2}\). First, we prove that the almost sure local well-posedness holds when \(\frac{1}{6}\leqslant s<\frac{1}{2}\) in the sense that the Duhamel term belongs to \(H_x^{1/2}({{\mathbb {R}}}^3)\). Furthermore, we prove that the global well-posedness and scattering hold for randomized, radial, large data \(f\in H_x^{s}({{\mathbb {R}}}^3)\) when \(\frac{17}{40}< s<\frac{1}{2}\). The key ingredient is to control the energy increment including the terms where the first order derivative acts on the linear flow, and our argument can lower down the order of derivative more than \(\frac{1}{2}\). To our best knowledge, this is the first almost sure large data global result for this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beceanu, M., Deng, Q., Soffer, A., Wu, Y.: Large global solutions for nonlinear Schrödinger equations I, mass-subcritical cases. Adv. Math. 391, Paper No. 107973 (2021)

  2. Beceanu, M., Deng, Q., Soffer, A., Wu, Y.: Large global solutions for nonlinear Schrödinger equations II. Mass-supercritical, energy-subcritical cases. Commun. Math. Phys. 382(1), 173–237 (2021)

    ADS  MATH  Google Scholar 

  3. Bényi, Á., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \({{{\mathbb{R} }}}^d\), \(d{\geqslant } 3\). Trans. Amer. Math. Soc. Ser. B 2, 1–50 (2015)

    MATH  Google Scholar 

  4. Bényi, Á., Oh, T., Pocovnicu, O.: Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \({{{\mathbb{R} }}}^3\). Trans. Amer. Math. Soc. Ser. B 6, 114–160 (2019)

    MATH  Google Scholar 

  5. Bényi, Á., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory for nonlinear dispersive PDEs. Landscapes of time-frequency analysis, 1–32, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham (2019)

  6. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)

    ADS  MATH  Google Scholar 

  7. Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421–445 (1996)

    ADS  MATH  Google Scholar 

  8. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Internat. Math. Res. Notices 5, 253–283 (1998)

    MATH  Google Scholar 

  9. Bourgain, J.: Scattering in the energy space and below for 3D NLS. J. Anal. Math. 75, 267–297 (1998)

    MATH  Google Scholar 

  10. Bourgain, J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12(1), 145–171 (1999)

    MATH  Google Scholar 

  11. Brereton, J.: Almost sure local well-posedness for the supercritical quintic NLS. Tunis. J. Math. 1(3), 427–453 (2019)

    MATH  Google Scholar 

  12. Bringmann, B.: Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions. Anal. PDE 13(4), 1011–1050 (2020)

    MATH  Google Scholar 

  13. Bringmann, B.: Almost sure scattering for the energy critical nonlinear wave equation. Preprint, ar**v:1812.10187

  14. Burq, N., Thomann, L.: Almost sure scattering for the one dimensional nonlinear Schrödinger equation. Preprint, ar**v:2012.13571

  15. Burq, N., Thomann, L., Tzvetkov, N.: Long time dynamics for the one dimensional non linear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 63(6), 2137–2198 (2013)

    MATH  Google Scholar 

  16. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449–475 (2008)

    ADS  MATH  Google Scholar 

  17. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent. Math. 173(3), 477–496 (2008)

    ADS  MATH  Google Scholar 

  18. Candy, T.: Multi-scale bilinear restriction estimates for general phases. Math. Ann. 375(1–2), 777–843 (2019)

    MATH  Google Scholar 

  19. Candy, T., Herr, S.: On the division problem for the wave maps equation. Ann. PDE 4(2), Paper No. 17, 61 pp (2018)

  20. Camps, N.: Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data. Preprint, ar**v:2110.10752

  21. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI. xiv+323 pp (2003)

  22. Cazenave, T., Weissler, F.: Some remarks on the nonlinear Schrödinger equation in the critical case. Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin (1989)

  23. Chen, J., Wang, B.: Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. Preprint, ar**v:2010.09383

  24. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrodinger and wave equations. Preprint, ar**v:0311048

  25. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9(5–6), 659–682 (2002)

    MATH  Google Scholar 

  26. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \({{{\mathbb{R} }}}^3\). Commun. Pure Appl. Math. 57(8), 987–1014 (2004)

    MATH  Google Scholar 

  27. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({{{\mathbb{R} }}}^3\). Ann. Math. 167(3), 767–865 (2008)

    MATH  Google Scholar 

  28. Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^2({{{\mathbb{T} }}})\). Duke Math. J. 161(3), 367–414 (2012)

    MATH  Google Scholar 

  29. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Amer. Math. Soc. 1(2), 413–439 (1988)

    MATH  Google Scholar 

  30. Da Prato, G., Debussche, A.: Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    MATH  Google Scholar 

  31. Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. Preprint, ar**v:1910.08492

  32. Dodson, B.: Global well-posedness and scattering for the defocusing, \(L^2\)-critical nonlinear Schrödinger equation when \(d{\geqslant } 3\). J. Amer. Math. Soc. 25(2), 429–463 (2012)

    MATH  Google Scholar 

  33. Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)

    MATH  Google Scholar 

  34. Dodson, B.: Global well-posedness and scattering for the defocusing, \(L^2\) critical, nonlinear Schrödinger equation when \(d=1\). Amer. J. Math. 138(2), 531–569 (2016)

    MATH  Google Scholar 

  35. Dodson, B.: Global well-posedness and scattering for the defocusing, \(L^2\) critical, nonlinear Schrödinger equation when \(d=2\). Duke Math. J. 165(18), 3435–3516 (2016)

    MATH  Google Scholar 

  36. Dodson, B.: Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension \(d=4\). Ann. Sci. Éc. Norm. Supér. (4) 52(1), 139–180 (2019)

    MATH  Google Scholar 

  37. Dodson, B.: Global well-posedness and scattering for nonlinear Schrödinger equations with algebraic nonlinearity when \(d=2,3\) and \(u_0\) is radial. Camb. J. Math. 7(3), 283–318 (2019)

    MATH  Google Scholar 

  38. Dodson, B.: Global well-posedness for the defocusing, cubic nonlinear Schro\(\ddot{d}\)inger equation with initial data in a critical space. Preprint, ar**v:2004.09618

  39. Dodson, B., Lührmann, J., Mendelson, D.: Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. Amer. J. Math. 142(2), 475–504 (2020)

    MATH  Google Scholar 

  40. Dodson, B., Lührmann, J., Mendelson, D.: Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. Adv. Math. 347, 619–676 (2019)

    MATH  Google Scholar 

  41. Duerinckx, M.: On nonlinear Schödinger equations with random initial data. Math. Eng. 4(4), 1–14 (2022)

    Google Scholar 

  42. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    MATH  Google Scholar 

  43. Feichtinger, H.G.: Modulation spaces on locally compact Abelian group. Technical Report, University of Vienna, 1983. In: Proc. Internat. Conf. on Wavelet and Applications, 2002, New Delhi Allied Publishers, India, pp. 99– 140 (2003)

  44. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64(4), 363–401 (1985)

    MATH  Google Scholar 

  45. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 144(1), 163–188 (1992)

    ADS  MATH  Google Scholar 

  46. Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 917–941 (2009)

    ADS  MATH  Google Scholar 

  47. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    ADS  MATH  Google Scholar 

  48. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46(1), 113–129 (1987)

    MATH  Google Scholar 

  49. Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120(5), 955–980 (1998)

    MATH  Google Scholar 

  50. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    ADS  MATH  Google Scholar 

  51. Kenig, C., Merle, F.: Scattering for \(\dot{H}^{1/2}\) bounded solutions to the cubic, defocusing NLS in \(3\) dimensions. Trans. Amer. Math. Soc. 362(4), 1937–1962 (2010)

    MATH  Google Scholar 

  52. Kenig, C., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40(1), 33–69 (1991). Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis

  53. Killip, R., Murphy, J., Visan, M.: Almost sure scattering for the energy-critical NLS with radial data below \(H^1({{{\mathbb{R} }}}^4)\). Commun. Partial Differ. Equ. 44(1), 51–71 (2019)

    MATH  Google Scholar 

  54. Killip, R., Visan, M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Amer. J. Math. 132(2), 361–424 (2010)

    MATH  Google Scholar 

  55. Killip, R., Tao, T., Visan, M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. (JEMS) 11(6), 1203–1258 (2009)

    MATH  Google Scholar 

  56. Killip, R., Visan, M., Zhang, X.: The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE 1(2), 229–266 (2008)

    MATH  Google Scholar 

  57. Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)

    MATH  Google Scholar 

  58. Koch, H., Tataru, D.: Conserved energies for the cubic nonlinear Schrödinger equation in one dimension. Duke Math. J. 167(17), 3207–3313 (2018)

    MATH  Google Scholar 

  59. Koch, H., Tataru, D., Visan, M.: Dispersive Equations and Nonlinear Waves: Generalized Korteweg-De Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps. Oberwolfach Seminars, 45. Birkhäuser/Springer, Basel. xii+312 pp (2014)

  60. Latocca, M.: Almost Sure Scattering at Mass Regularity for Radial Schrödinger Equations. Preprint, ar**v:2011.06309

  61. Lebowitz, J., Rose, H., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Statist. Phys. 50(3–4), 657–687 (1988)

    ADS  MATH  Google Scholar 

  62. Li, D.: Global well-posedness of hedgehog solutions for the (3+1) Skyrme model. Duke Math. J. 170, 1377–1418 (2021)

    MATH  Google Scholar 

  63. Lin, J.E., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal. 30(2), 245–263 (1978)

    MATH  Google Scholar 

  64. Lührmann, J., Mendelson, D.: Random data Cauchy theory for nonlinear wave equations of power-type on \({{{\mathbb{R} }}}^3\). Commun. Partial Differ. Equ. 39(12), 2262–2283 (2014)

    MATH  Google Scholar 

  65. Murphy, J.: Random data final-state problem for the mass-subcritical NLS in \(L^2\). Proc. Amer. Math. Soc. 147(1), 339–350 (2019)

    MATH  Google Scholar 

  66. Morawetz, C.: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. London Ser. A 306, 291–296 (1968)

    ADS  MATH  Google Scholar 

  67. Nakanishi, K.: Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2. J. Funct. Anal. 169(1), 201–225 (1999)

    MATH  Google Scholar 

  68. Nakanishi, K., Yamamoto, T.: Randomized final-data problem for systems of nonlinear Schrödinger equations and the Gross-Pitaevskii equation. Math. Res. Lett. 26(1), 253–279 (2019)

    MATH  Google Scholar 

  69. Oh, T., Okamoto, M., Pocovnicu, O.: On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete Contin. Dyn. Syst. 39(6), 3479–3520 (2019)

    MATH  Google Scholar 

  70. Pocovnicu, O., Wang, Y.: An \(L^p\)-theory for almost sure local well-posedness of the nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 356(6), 637–643 (2018)

    MATH  Google Scholar 

  71. Ryckman, E., Visan, M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \({{{\mathbb{R} }}}^{1+4}\). Amer. J. Math. 129(1), 1–60 (2007)

    MATH  Google Scholar 

  72. Shen, J., Wu, Y.: Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation. Preprint, ar**v:2008.10019

  73. Stein, Elias M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ. xiv+695 pp (1993)

  74. Su, Q.: Global well posedness and scattering for the defocusing, cubic NLS in \({{{\mathbb{R} }}}^3\). Math. Res. Lett. 19(2), 431–451 (2012)

    MATH  Google Scholar 

  75. Tao, T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13(6), 1359–1384 (2003)

    MATH  Google Scholar 

  76. Tao, T., Visan, M., Zhang, X.: Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140(1), 165–202 (2007)

    MATH  Google Scholar 

  77. Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30(1), 115–125 (1987)

    MATH  Google Scholar 

  78. Tzvetkov, N.: Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation. Probab. Theory Related Fields 146(3–4), 481–514 (2010)

    MATH  Google Scholar 

  79. Visan, M.: The defocusing energy-critical nonlinear Schr\(\ddot{d}\)inger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)

    MATH  Google Scholar 

  80. Wang, B., Zhao, L., Guo, B.: Isometric decomposition operators, function spaces \(E^{\lambda }_{p, q}\) and applications to nonlinear evolution equations. J. Funct. Anal. 233(1), 1–39 (2006)

    Google Scholar 

  81. Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232(1), 36–73 (2007)

    ADS  MATH  Google Scholar 

  82. Wolff, T.: A sharp bilinear cone restriction estimate. Ann. Math. 153(3), 661–698 (2001)

    MATH  Google Scholar 

  83. Zhang, T., Fang, D.: Random data Cauchy theory for the generalized incompressible Navier-Stokes equations. J. Math. Fluid Mech. 14(2), 311–324 (2012)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

J. Shen and Y. Wu are partially supported by NSFC 12171356 and 11771325. A. Soffer is partially supported by the Simons’ Foundation (No. 395767). The authors would like to thank the editor and anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avy Soffer.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Soffer, A. & Wu, Y. Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation. Commun. Math. Phys. 397, 547–605 (2023). https://doi.org/10.1007/s00220-022-04500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04500-z

Navigation