Log in

Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the inhomogeneous nonlinear Schrödinger equation \(i\partial _t u +\Delta u =K(x)|u|^\alpha u,\; u(0)=u_0\in H^1({\mathbb {R}}^N),\; N\ge 3,\; |K(x)|+|x||\nabla K(x)|\lesssim |x|^{-b},\; 0<b< \min (2, N-2),\; 0<\alpha <{(4-2b)/(N-2)}\). We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted \(L^2\)-space for a new range \(\alpha _0(b)<\alpha <(4-2b)/N\). The value \(\alpha _0(b)\) is the positive root of \(N\alpha ^2+(N-2+2b)\alpha -4+2b=0,\) which extends the Strauss exponent known for \(b=0\). Our results improve the known ones for \(K(x)=\mu |x|^{-b}\), \(\mu \in {\mathbb {C}}\). For general potentials, we highlight the impact of the behavior at the origin and infinity on the allowed range of \(\alpha \). In the defocusing case, we prove decay estimates provided that the potential satisfies some rigidity-type condition which leads to a scattering result. We give also a new scattering criterion taking into account the potential K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Aloui and S. Tayachi, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 41 (2021), 5409–5437.

    Article  MathSciNet  Google Scholar 

  2. L. Aloui and S. Tayachi, Local existence, global existence and scattering for the 3D inhomogeneous nonlinear Schrödinger equation, preprint 2021.

  3. K. Aoki, T. Inui, H. Miyazaki, H. Mizutani and K. Uriya, Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential, ar**v:2101.09423v2.

  4. A. De Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), 1157–1177.

    Article  MathSciNet  Google Scholar 

  5. L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 202 (2021), 112–118.

    Article  Google Scholar 

  6. L. Campos and M. Cardoso, Blow up and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl. 28 (2021).

  7. M. Cardoso, L. G. Farah, C. M. Guzmán, and J. Murphy, Scattering below the ground state for the intercritical non-radial inhomogeneous NLS, Nonlinear Analysis: Real World Applications, Volume 68, 2022, Article 103687.

  8. T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/Amer. Math. Soc., New York/Providence, RI, 2003.

  9. T. Cazenave and F. B. Weissler, The structure of solutions to the pseudo-conformally invariant nonlinear Schrödinger equation, Proceedings of the Royal Society of Edinburgh, 117A (1991), 251–273.

    Article  Google Scholar 

  10. T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75–100.

    Article  MathSciNet  Google Scholar 

  11. J. Chen, On a class of nonlinear inhomogeneous Schrödinger equation, J. Appl. Math. Comput., 32 (2010), 237–253.

    Article  MathSciNet  Google Scholar 

  12. J. Chen and B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 357–367.

    MathSciNet  Google Scholar 

  13. Y. Cho, S. Hong, and K. Lee, On the global well-posedness of focusing energy-critical inhomogeneous NLS, J. Evol. Equ., 20 (2020), 1349–1380.

    Article  MathSciNet  Google Scholar 

  14. Y. Cho and K. Lee, On the focusing energy-critical inhomogeneous NLS: weighted space approach, Nonlinear Anal., 205 (2021), 112261, 21 pp.

  15. V. D. Dinh, Scattering theory in a weighted\(L^2\)space for a class of the defocusing inhomegeneous nonlinear Schrödinger equation, preprint ar**v:1710.01392, 2017.

  16. V. D. Dinh, Blowup of \(H^1\)solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169–188.

  17. V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 19 (2019), 411–434.

    Article  MathSciNet  Google Scholar 

  18. V. D. Dinh and S. Keraani, Long time dynamics of nonradial solutions to inhomogeneous nonlinear Schrödinger equations , SIAM J. Math. Anal., 53 (2021), 4765–4811.

    Article  MathSciNet  Google Scholar 

  19. L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomegeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), 193–208.

    Article  MathSciNet  Google Scholar 

  20. L. G. Farah and C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), 4175–4231.

    Article  MathSciNet  Google Scholar 

  21. L. G. Farah and C. M. Guzmán, Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.), 51 (2020), 449–512.

  22. R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ., 45 (2005), 145–158.

    MathSciNet  Google Scholar 

  23. F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud., 10 (2010), 357–400.

    Article  MathSciNet  Google Scholar 

  24. F. Genoud, C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137–286.

    Article  MathSciNet  Google Scholar 

  25. Ginibre J. and Velo G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1–32.

  26. C. M. Guzmán, On well posedness for the inhomogneous nonlinear Schrödinger equation, Nonlinear Anal., 37 (2017), 249–286.

    Article  Google Scholar 

  27. H. Hajaiej, X. W. Yub and Z. C. Zhai, Fractional Gagliardo Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 396 (2012), 569–577.

    Article  MathSciNet  Google Scholar 

  28. M. Keel, T. Tao, Endpoint Strichartz Estimates, American Journal of Mathematics, 120 (1998), 955-980.

    Article  MathSciNet  Google Scholar 

  29. J. Kim, Y. J. Lee and I. Seo, On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case, J. Differential Equations, 280 (2021), 179–202.

    Article  MathSciNet  Google Scholar 

  30. J. Lee and I. Seo, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation, Arch. Math. (Basel) 117 (2021), no. 4, 441–453.

    Article  MathSciNet  Google Scholar 

  31. P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics., 431 (2002), Chapman & Hall/CRC, Boca Raton, FL.

  32. Y. Liu, X. Wang and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 2105–2122.

    Article  MathSciNet  Google Scholar 

  33. F. Merle, Nonexistence of minimal blow-up solutions of equations\(iu_t= -\Delta u- k(x)|u|^{4/N}u\) in \(R^N\), Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), 33–85.

  34. C. Miao, J. Murphy and J. Zheng, Scattering for the non-radial inhomogeneous NLS, Mathematical Research Letters, 28 (2021), 1481-1504.

    Article  MathSciNet  Google Scholar 

  35. K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, Nonlinear differ. equ. appl., 9 (2002) 45-68.

    Article  Google Scholar 

  36. P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471–546.

    Article  MathSciNet  Google Scholar 

  37. W. A. Strauss, Nonlinear scattering theory at low energy, J. Func. Anal., 41 (1981), 110–133.

    Article  MathSciNet  Google Scholar 

  38. R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), 825–853.

    Article  MathSciNet  Google Scholar 

  39. T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power nonlinearities, Comm. Partal Differential Equations, 22(2007), 1281-1343.

    Article  Google Scholar 

  40. Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 321–347.

    MathSciNet  Google Scholar 

  41. M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123–2136.

    Article  MathSciNet  Google Scholar 

  42. S. Zhu, Blow-up solutions for the inhomogeneous Schrödinger equation with \(L^2\)supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), 760–776.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassaad Aloui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloui, L., Tayachi, S. Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 24, 61 (2024). https://doi.org/10.1007/s00028-024-00965-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00965-8

Keywords

Mathematics Subject Classification

Navigation