Log in

Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the present research, lactic acid bacteria (LAB) and yeasts which were isolated from sourdough samples were investigated for their technologically useful properties for the production of improved food products. LAB and yeast isolates were cultured and the DNA was extracted; restriction analyses were applied to obtain profile groups and representative strains were sequenced. Lactobacillus sanfranciscensis was the most isolated species followed by Lactobacillus namurensis, Lactobacillus pentosus, Lactobacillus paralimentarius, Lactobacillus sakei, Lactobacillus crustorum, Pediococcus parvulus, Leuconostoc citreum, and Weissella cibaria. Saccharomyces cerevisiae was the most frequently detected yeast species. Minor yeast species were Kazachstania humilis (Candida milleri) and Wickerhamomyces anomalus. The majority of the LAB strains produced CO2; after 4 h of fermentation, the two strains of L. citreum B435 and B521 reached pH values below 5.00, 19 strains reached values below 4.00 after 24 h of fermentation, while after 72 h of fermentation all the strains lowered their pH below 3.60. Two strains, L. citreum B435 and L. sanfranciscensis B450, produced exopolysaccharides. All the LAB strains were able to degrade gluten with different intensity; the strain of L. sakei B433 and the strains of L. pentosus B506, B508, and B512 exhibited the highest intensity of degradation. All the yeast strains were able to grow at a pH value of 2.5. S. cerevisiae L973 and W. anomalus L1081, showed amylolytic properties; excluding the C. milleri L999 all the strains were maltose-positive. According to the technological features, LAB and yeasts strains which are thus isolated are potential starters to be used for improved bakery products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Vuyst L, Vrancken G, Ravyts F et al (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675

    Article  CAS  PubMed  Google Scholar 

  2. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40

    Article  CAS  PubMed  Google Scholar 

  3. Pepe O, Blaiotta G, Moschetti G et al (2003) Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl Environ Microb 69:2321–2339

    Article  CAS  Google Scholar 

  4. Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699

    Article  CAS  PubMed  Google Scholar 

  5. Vogel RF, Knorr R, Muller MRA et al (1999) Non-dairy lactic fermentations: the cereal world. Antonie Leeuwenhoek 76:403–411

    Article  CAS  PubMed  Google Scholar 

  6. Chavan RS, Chavan SR (2011) Sourdough technology—a traditional way for wholesome foods: a review. Compr Rev Food Sci Food Saf 10:170–183

    CAS  Google Scholar 

  7. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  8. Jenson I (1998) Bread and baker’s yeast. In: Wood BJB (ed) Microbiology of fermented foods. Blackie Academic and Professional, London, pp 172–198

    Chapter  Google Scholar 

  9. Suihko ML, Mäkinen V (1984) Tolerance of acetate, propionate and sorbate by Saccharomyces cerevisiae and Torulopsis holmii. Food Microbiol 1:105–110

    Article  Google Scholar 

  10. Gobbetti M, Corsetti A (1997) Lactobacillus sanfrancisco, a key sourdough lactic acid bacterium: a review. Food Microbiol 14:175–187

    Article  CAS  Google Scholar 

  11. Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation: a review. Food Res Int 40:539–558

    Article  CAS  Google Scholar 

  12. Cai Y, Okada H, Mori H et al (1999) Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 49:1451–1455

    Article  CAS  PubMed  Google Scholar 

  13. Ehrmann MA, Müller MRA, Vogel RF (2003) Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 53:7–13

    Article  CAS  PubMed  Google Scholar 

  14. De Vuyst L, Harth H, Van Kerrebroeck S, Leroy F (2016) Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 239:26–34

    Article  CAS  PubMed  Google Scholar 

  15. Minervini F, Di Cagno R, Lattanzi A et al (2012) Lactic acid bacterium and yeast microbiotas of 19 sourdoughs used for traditional/typical Italian breads: interactions between ingredients and microbial species diversity. Appl Environ Microbiol 78:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Valmorri S, Tofalo R, Settanni L et al (2010) Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy). Antonie Leeuwenhoek 97:119–129

    Article  CAS  PubMed  Google Scholar 

  17. Alfonzo A, Ventimiglia G, Corona O et al (2013) Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol 36:343–354

    Article  CAS  PubMed  Google Scholar 

  18. Osimani A, Zannini E, Aquilanti L et al (2009) Lactic acid bacteria and yeasts from wheat sourdoughs of the Marche region. Ital J Food Sci 21:269–286

    CAS  Google Scholar 

  19. Vera A, Ly-Chatain MH, Rigobello V, Demarigny Y (2012) Description of a French natural wheat sourdough over 10 consecutive days focussing on the lactobacilli present in the microbiota. Antonie Leeuwenhoek 101:369–377

    Article  PubMed  Google Scholar 

  20. Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food Sci Nutr 54:891–901

    Article  CAS  PubMed  Google Scholar 

  21. Manini F, Casiraghi MC, Poutanen K et al (2016) Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT Food Sci Technol 66:275–283

    Article  CAS  Google Scholar 

  22. Di Cagno R, De Angelis M, Lavermicocca P et al (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    Article  CAS  Google Scholar 

  24. Vrancken G, De Vuyst L, Van der Meulen R et al (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10:471–481

    Article  CAS  PubMed  Google Scholar 

  25. Kline L, Sugihara R (1971) Microorganisms of the San Francisco sourdough bread process II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl Microbiol 21:459–465

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pulvirenti A, Solieri L, Gullo M et al (2004) Occurrence and dominance of yeast species in sourdough. Lett Appl Microbiol 38:113–117

    Article  CAS  PubMed  Google Scholar 

  27. Tofalo R, Chaves-López C, Di Fabio F et al (2009) Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. Int J Food Microbiol 130:179–187

    Article  CAS  PubMed  Google Scholar 

  28. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  29. Young JP, Douwner HW, Eardly BD (1991) Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aquilanti L, Silvestri G, Zannini E et al (2007) Phenotypic, genotypic and technological characterization of predominant lactic acid bacteria in Pecorino cheese from central Italy. J Appl Microbiol 103:948–960

    Article  CAS  PubMed  Google Scholar 

  31. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  CAS  PubMed  Google Scholar 

  32. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  33. Kraková L, Chovanová K, Ženisová K et al (2012) Yeast diversity investigation of wine-related samples from two different Slovakian wine-producing areas through a multistep procedure. LWT Food Sci Technol 46:406–411

    Article  CAS  Google Scholar 

  34. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequence. Antonie Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  36. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerez CL, Rollán GC, de Valdez CF (2006) Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Lett Appl Microbiol 42:459–464

    Article  CAS  PubMed  Google Scholar 

  38. Ventimiglia G, Alfonzo A, Galluzzo P et al (2015) Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol 51:57–68

    Article  CAS  PubMed  Google Scholar 

  39. Ripari V, Cecchi T, Berardi E (2016) Microbiological characterisation and volatiles profile of model, ex-novo, and traditional Italian white wheat sourdoughs. Food Chem 205:297–307

    Article  CAS  PubMed  Google Scholar 

  40. Torriani S, Felis GE, Dellaglio F (2001) Differentiation of Lactobacillus plantarum. L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 67:3450–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pulvirenti A, Caggia C, Restuccia C et al (2001) DNA fingerprinting methods used for identification of yeasts isolated from Sicilian sourdoughs. Ann Microbiol 51:107–120

    CAS  Google Scholar 

  42. Yağmur G, Tanguler H, Leventdurur S et al (2016) Identification of predominant lactic acid bacteria and yeasts of Turkish sourdoughs and selection of starter cultures for liquid sourdough production using different flours and dough yields. Pol J Food Nutr Sci 66:99–107

    Google Scholar 

  43. Scheirlinck I, Van der Meulen R, Van Schoor A et al (2008) Taxonomic structure and stability of the bacterial community in Belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl Environ Microbiol 74:2414–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ricciardi A, Parente E, Piraino P et al (2005) Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy). Int J Food Microbiol 98:63–72

    Article  CAS  PubMed  Google Scholar 

  45. Rocha JM, Malcata FX (1999) On the microbiological profile of traditional Portuguese sourdough. J Food Prot 62:1416–1429

    Article  CAS  PubMed  Google Scholar 

  46. Alfonzo A, Urso V, Corona O et al (2016) Development of a method for the direct fermentation of semolina by selected sourdough lactic acid bacteria. Int J Food Microbiol 239:65–78

    Article  CAS  PubMed  Google Scholar 

  47. Pontonio E, Nionelli L, Curiel JA et al (2015) Iranian wheat flours from rural and industrial mills: exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads. Food Microbiol 47:99–110

    Article  CAS  PubMed  Google Scholar 

  48. Pandey A, Nigam P, Soccol CR et al (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  49. Souza PM, Magalhaes PO (2010) Application of microbial amylase in industry. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gobbetti M, Simonetti MS, Corsetti A, Santinelli F, Rossi J, Damiani P (1995) Volatile compound and organic acid production by mixed wheat sourdough starters: influence of fermentation parameters and dynamics during baking. Food Microbiol 12:497–507

    Article  CAS  Google Scholar 

  51. Coda R, Nionelli L, Rizzello CG et al (2010) Spelt and emmer flours: characterization of the lactic acid bacteria microbiota and selection of mixed autochthonous starters for bread making. J Appl Microbiol 108:925–935

    Article  CAS  PubMed  Google Scholar 

  52. Hoseney C (1994) Principles of cereals science and technology, 2nd edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  53. Tieking M, Korakli M, Ehrmann MA et al (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giannou V, Kessoglou V, Tzia C (2003) Quality and safety characteristics of bread made from frozen dough. Trends Food Sci Technol 14:99–108

    Article  CAS  Google Scholar 

  55. Miller RA, Hoseney RC (2008) Effect of non chaotropic salts on flour bread-making properties. Cereal Chem 69:366–371

    Google Scholar 

  56. Röcken W, Voysey PA (1995) Sourdough fermentation in bread making. J Appl Bacteriol 79:38–48

    Article  Google Scholar 

  57. Spicher G (1983) In: Rehm HJ, Reed G (eds) Baked goods. Biotechnology. Verlag Chemie, Weinheim, pp 1–80

    Google Scholar 

  58. Banu I, Aprodu I (2012) Studies concerning the use of Lactobacillus helveticus and Kluyveromyces marxianus for rye sourdough fermentation. Eur Food Res Technol 234:769–777

    Article  CAS  Google Scholar 

  59. Czerny M, Schieberle P (2002) Important aroma compounds in freshly ground wholemeal and white wheat flour-identification and quantitative changes during fermentation. J Agric Food Chem 50:6835–6840

    Article  CAS  PubMed  Google Scholar 

  60. Gobbetti M, Simonetti MS, Corsetti A et al (1995) Volatile compound and organic acid production by mixed wheat sourdough starters: influence of fermentation parameters and dynamics during baking. Food Microbiol 12:497–507

    Article  CAS  Google Scholar 

  61. Di Cagno R, Pontonio E, Buchin S et al (2014) Diversity of the lactic acid bacterium and yeast microbiota in the switch from firm- to liquid-sourdough fermentation. Appl Environ Microbiol 80:3161–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Settanni L, Ventimiglia G, Alfonzo A et al (2013) An integrated technological approach to the selection of lactic acid bacteria of flour origin for sourdough production. Food Res Int 54:1569–1578]

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PON03PE_00090_1 Innovazione di prodotto e di processo nella filiera dei prodotti da forno e dolciari. The authors would like to thank the bakeries: Panificio Sant’Antonio, Panificio Il fornaretto, Panificio Il forno a legna, Panificio L’antico sapore, Panificio Gramuglia, Colacchio Food, Panificio S. Filippo, Panificio La Scala Salvatore, Panificio Circosta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Sidari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This research does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martorana, A., Giuffrè, A.M., Capocasale, M. et al. Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. Eur Food Res Technol 244, 1873–1885 (2018). https://doi.org/10.1007/s00217-018-3100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3100-x

Keywords

Navigation