Log in

Cold spray deposition of cermets: insights into bonding mechanism and critical parameters

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The cold spray (CS) process is an advanced material deposition method that has emerged as a versatile method to create high-performance coatings and functional components. This process offers unique advantages in achieving exceptional material adhesion and properties without needing high-temperature melting or heating. The CS process enables the deposition of cermets, allowing it to combine the favorable properties of their constituent phases. This review article explores the bonding mechanism specific to the CS deposition of cermets, highlighting its contrast with that of pure metals. It subsequently investigates the pivotal role played by ceramic particles in the overall efficiency of the CS deposition process, emphasizing the need for a comprehensive understanding of particle properties to achieve quality coatings for specific applications. The paper explores the challenges and limitations imposed by the CS process of cermets in optimizing the crucial parameters. It dissects the influence of interfacial bond strength and porosities on the tribological and corrosion properties of CS-deposited coatings. The discussion extends to the significant role played by substrate in sha** the coating’s characteristics. The potential for enhancing coating properties through post-processing treatments is also thoroughly examined. The review article also discusses current advancements in the field and contemplates potential future directions, offering a comprehensive exploration of CS deposition of cermets and its multifaceted considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright Elsevier, 2006

Fig. 4

Copyright Elsevier, 2008

Fig. 5

Copyright Springer Nature, 2020

Fig. 6

Copyright Springer Nature, 2020

Fig. 7
Fig. 8

Copyright Elsevier, 2006

Fig. 9

Copyright Springer Nature, 2022

Fig. 10

Copyright Springer Nature, 2019

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Champagne V, Helfritch D (2016) The unique abilities of cold spray deposition. Int Mater Rev 61:437–455. https://doi.org/10.1080/09506608.2016.1194948

    Article  Google Scholar 

  2. Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15:223–232. https://doi.org/10.1361/105996306X108110

    Article  Google Scholar 

  3. Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  Google Scholar 

  4. Grujicic M, Zhao CL, DeRosset WS, Helfritch D (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Des 25:681–688. https://doi.org/10.1016/j.matdes.2004.03.008

    Article  Google Scholar 

  5. Hussain T, McCartney DG, Shipway PH, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18:364–379. https://doi.org/10.1007/s11666-009-9298-1

    Article  Google Scholar 

  6. Alkhimov AP, Kosarev VF, Klinkov SV (2001) The features of cold spray nozzle design. J Therm Spray Technol 10:375–381. https://doi.org/10.1361/105996301770349466

    Article  Google Scholar 

  7. Heïnrich P, Heinrich K, Thorsten S (2014) Laval nozzle for thermal spraying and kinetic spraying. U.S. Patent No. 8,651,394

  8. Jodoin B (2002) Cold spray nozzle mach number limitation. J Therm Spray Technol 11:496–507

    Article  Google Scholar 

  9. Yin S, Cavaliere P, Aldwell B et al (2018) Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf 21:628–650. https://doi.org/10.1016/j.addma.2018.04.017

    Article  Google Scholar 

  10. He L, Hassani M (2020) A review of the mechanical and tribological behavior of cold spray metal matrix composites. J Therm Spray Technol 29:1565–1608. https://doi.org/10.1007/s11666-020-01091-w

    Article  Google Scholar 

  11. Monette Z, Kasar AK, Daroonparvar M, Menezes PL (2020) Supersonic particle deposition as an additive technology: methods, challenges, and applications. Int J Adv Manuf Technol 106:2079–2099. https://doi.org/10.1007/s00170-019-04682-2

    Article  Google Scholar 

  12. Ralls AM, Daroonparvar M, Sikdar S et al (2022) Tribological and corrosion behavior of high pressure cold sprayed duplex 316 L stainless steel. Tribol Int 169:107471. https://doi.org/10.1016/j.triboint.2022.107471

    Article  Google Scholar 

  13. Aldwell B, Yin S, McDonnell KA et al (2016) A novel method for metal–diamond composite coating deposition with cold spray and formation mechanism. Scr Mater 115:10–13

    Article  Google Scholar 

  14. Wang Q, Spencer K, Birbilis N, Zhang M-X (2010) The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surf Coat Technol 205:50–56

    Article  Google Scholar 

  15. Jose SA, John M, Menezes PL (2022) Cermet systems: synthesis, properties, and applications. Ceramics 5:210–236. https://doi.org/10.3390/ceramics5020018

    Article  Google Scholar 

  16. Klinkov SV, Kosarev VF, Sova AA, Smurov I (2009) Calculation of particle parameters for cold spraying of metal-ceramic mixtures. J Therm Spray Technol 18:944–956. https://doi.org/10.1007/s11666-009-9346-x

    Article  Google Scholar 

  17. Chu X, Che H, Teng C et al (2020) A multiple particle arrangement model to understand cold spray characteristics of bimodal size 316L/Fe powder mixtures. Surf Coat Technol 381:125137

    Article  Google Scholar 

  18. Sun W, Chu X, Lan H et al (2022) Current implementation status of cold spray technology: a short review. J Therm Spray Technol. https://doi.org/10.1007/s11666-022-01382-4

    Article  Google Scholar 

  19. Wang Q, Sun Q, Zhang M-X et al (2018) The influence of cold and detonation thermal spraying processes on the microstructure and properties of Al-based composite coatings on Mg alloy. Surf Coat Technol 352:627–633. https://doi.org/10.1016/j.surfcoat.2018.08.045

    Article  Google Scholar 

  20. Zhao L, Zhou D, **e G et al (2023) Unraveling the influence of Al particle size on microstructure and tribological properties of cold sprayed Al/B4C composite coatings. Mater Today Commun 34:105257. https://doi.org/10.1016/j.mtcomm.2022.105257

    Article  Google Scholar 

  21. Imbriglio SI, Chromik RR (2021) Factors affecting adhesion in metal/ceramic interfaces created by cold spray. J Therm Spray Technol 30:1703–1723. https://doi.org/10.1007/s11666-021-01229-4

    Article  Google Scholar 

  22. Yang K, Li W, Xu Y, Yang X (2019) Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings. J Alloys Compd 774:1223–1232. https://doi.org/10.1016/j.jallcom.2018.09.386

    Article  Google Scholar 

  23. Champagne VK (2007) The cold spray materials deposition process : fundamentals and applications. Woodhead ; CRC Press, Cambridge, Boca Raton. http://www.crcnetbase.com/isbn/9781420066708

  24. Singh H, Sidhu TS, Kalsi SBS, Karthikeyan J (2013) Development of cold spray from innovation to emerging future coating technology. J Braz Soc Mech Sci Eng 35:231–245. https://doi.org/10.1007/s40430-013-0030-1

    Article  Google Scholar 

  25. Ghelichi R, Guagliano M (2009) Coating by the cold spray process: a state of the art. Frat Ed Integrità Strutt 3:30–44

    Article  Google Scholar 

  26. Li C-J, Wang H-T, Zhang Q et al (2010) Influence of spray materials and their surface oxidation on the critical velocity in cold spraying. J Therm Spray Technol 19:95–101

    Article  Google Scholar 

  27. Ko KH, Choi JO, Lee H (2016) The interfacial restructuring to amorphous: a new adhesion mechanism of cold-sprayed coatings. Mater Lett 175:13–15. https://doi.org/10.1016/j.matlet.2016.03.132

    Article  Google Scholar 

  28. Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater 54:729–742. https://doi.org/10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  29. Hassani-Gangaraj M, Veysset D, Champagne VK et al (2019) Response to comment on “Adiabatic shear instability is not necessary for adhesion in cold spray.” Scr Mater 162:515–519. https://doi.org/10.1016/j.scriptamat.2018.12.015

    Article  Google Scholar 

  30. Vlcek J, Gimeno L, Huber H, Lugscheider E (2005) A systematic approach to material eligibility for the cold-spray process. J Therm Spray Technol 14:125–133

    Article  Google Scholar 

  31. Vidaller MV, List A, Gaertner F et al (2015) Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates. J Therm Spray Technol 24:644–658. https://doi.org/10.1007/s11666-014-0200-4

    Article  Google Scholar 

  32. Ernst KR, Ernst TM, Gärtner F et al (2023) Bonding probabilities in cold spray deposition of composite blends. Surf Coat Technol 473:129970. https://doi.org/10.1016/j.surfcoat.2023.129970

    Article  Google Scholar 

  33. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Technol 7:205–212. https://doi.org/10.1361/105996398770350945

    Article  Google Scholar 

  34. Shin S, Yoon S, Kim Y, Lee C (2006) Effect of particle parameters on the deposition characteristics of a hard/soft-particles composite in kinetic spraying. Surf Coat Technol 201:3457–3461. https://doi.org/10.1016/j.surfcoat.2006.07.255

    Article  Google Scholar 

  35. Manko HH, Rafanelli AJ (2002) Solders and soldering. J Electron Packag 124:314–314. https://doi.org/10.1115/1.1503063

    Article  Google Scholar 

  36. Sova A, Maestracci R, Jeandin M et al (2017) Kinetics of composite coating formation process in cold spray: modelling and experimental validation. Surf Coat Technol 318:309–314. https://doi.org/10.1016/j.surfcoat.2016.06.084

    Article  Google Scholar 

  37. Kawakita J, Kuroda S, Krebs S, Katanoda H (2006) <I>In-situ</I> densification of Ti coatings by the warm spray (two-stage HVOF) process. Mater Trans 47:1631–1637. https://doi.org/10.2320/matertrans.47.1631

    Article  Google Scholar 

  38. Liu Y, Tan G, Tang J et al (2023) Enhanced corrosion and wear resistance of Zn–Ni/Cu–Al2O3 composite coating prepared by cold spray. J Solid State Electrochem 27:439–453. https://doi.org/10.1007/s10008-022-05335-3

    Article  Google Scholar 

  39. Yin S, Cizek J, Chen C et al (2020) Metallurgical bonding between metal matrix and core-shelled reinforcements in cold sprayed composite coating. Scr Mater 177:49–53. https://doi.org/10.1016/j.scriptamat.2019.09.023

    Article  Google Scholar 

  40. Li C, Yi M, Wei G et al (2020) Effect of multilayer core-shell microstructure on mechanical properties of Ti(C, N) based self-lubricating cermet materials. J Alloys Compd 817:153197. https://doi.org/10.1016/j.jallcom.2019.153197

    Article  Google Scholar 

  41. Upadhyaya R, Tailor S, Shrivastava S et al (2017) Effect of electroless Ni plating on the properties of cold-sprayed Ni–Al2O3 coatings. Surf Innov 5:97–105

    Article  Google Scholar 

  42. Fallah P, Rajagopalan S, McDonald A, Yue S (2020) Development of hybrid metallic coatings on carbon fiber-reinforced polymers (CFRPs) by cold spray deposition of copper-assisted copper electroplating process. Surf Coat Technol 400:126231

    Article  Google Scholar 

  43. Blazynski TZ (2012) Explosive welding, forming and compaction. Springer Science & Business Media

  44. King PC, Jahedi M (2010) Relationship between particle size and deformation in the cold spray process. Appl Surf Sci 256:1735–1738

    Article  Google Scholar 

  45. Papyrin AN, Klinkov SV, Kosarev VF (2003) Modeling of particle-substrate adhesive interaction under the cold spray process. In: Proceedings of the ITSC2003. Thermal spray 2003: proceedings from the international thermal spray conference. ASM, Orlando, pp 27–35. https://doi.org/10.31399/asm.cp.itsc2003p0027

  46. Adaan-Nyiak MA, Tiamiyu AA (2023) Recent advances on bonding mechanism in cold spray process: a review of single-particle impact methods. J Mater Res 38:69–95. https://doi.org/10.1557/s43578-022-00764-2

    Article  Google Scholar 

  47. Assadi H, Schmidt T, Richter H et al (2011) On parameter selection in cold spraying. J Therm Spray Technol 20:1161–1176

    Article  Google Scholar 

  48. Fernandez R, Jodoin B (2018) Cold Spray aluminum–alumina cermet coatings: effect of alumina content. J Therm Spray Technol 27:603–623. https://doi.org/10.1007/s11666-018-0702-6

    Article  Google Scholar 

  49. Pattison J, Celotto S, Khan A, O’neill W, (2008) Standoff distance and bow shock phenomena in the Cold Spray process. Surf Coat Technol 202:1443–1454

    Article  Google Scholar 

  50. Shockley JM, Sylvie Descartes P, Vo EI, Chromik RR (2015) The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al–Al2O3 composites. Surf Coat Technol 270:324–333https://doi.org/10.1016/j.surfcoat.2015.01.057

  51. Sova A, Kosarev V, Papyrin A, Smurov I (2011) Effect of ceramic particle velocity on cold spray deposition of metal-ceramic coatings. J Therm Spray Technol 20:285–291

    Article  Google Scholar 

  52. Grigoriev S, Okunkova A, Sova A et al (2015) Cold spraying: from process fundamentals towards advanced applications. Surf Coat Technol 268:77–84. https://doi.org/10.1016/j.surfcoat.2014.09.060

    Article  Google Scholar 

  53. Sova A, Papyrin A, Smurov I (2009) Influence of ceramic powder size on process of cermet coating formation by cold spray. J Therm Spray Technol 18:633

    Article  Google Scholar 

  54. Wu J, Tao Y, ** H, Li M, **ong T, Sun C (2013) Friction and wear properties of cold gas dynamic sprayed composite coatings. J Coat 2013:613178

  55. Shkodkin A, Kashirin A, Klyuev O, Buzdygar T (2006) Metal particle deposition stimulation by surface abrasive treatment in gas dynamic spraying. J Therm Spray Technol 15:382–386. https://doi.org/10.1361/105996306X124383

    Article  Google Scholar 

  56. Miguel J, Guilemany J, Dosta S (2010) Effect of the spraying process on the microstructure and tribological properties of bronze–alumina composite coatings. Surf Coat Technol 205:2184–2190

    Article  Google Scholar 

  57. Li CJ, Suo XK, Yang GJ, Li CX (2010) Influence of annealing on the microstructure and wear performance of diamond/NiCrAl composite coating deposited through cold spraying. In: Mater Sci Forum, vol 638. Trans Tech Publications Ltd, pp 894–899

  58. Irissou E, Legoux J-G, Arsenault B (2007) Investigation of Al-Al2O3 cold spray coating formation and properties. J Therm Spray Technol 16:661–668. https://doi.org/10.1007/s11666-007-9086-8

    Article  Google Scholar 

  59. Sansoucy E, Marcoux P, Ajdelsztajn L, Jodoin B (2008) Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process. Surf Coat Technol 202:3988–3996

    Article  Google Scholar 

  60. Spencer K, Fabijanic D, Zhang M-X (2012) The influence of Al2O3 reinforcement on the properties of stainless steel cold spray coatings. Surf Coat Technol 206:3275–3282

    Article  Google Scholar 

  61. Huang C, Li W, Planche M-P et al (2017) In-situ formation of Ni-Al intermetallics-coated graphite/Al composite in a cold-sprayed coating and its high temperature tribological behaviors. J Mater Sci Technol 33:507–515

    Article  Google Scholar 

  62. Wang Y, Normand B, Mary N et al (2017) Effects of ceramic particle size on microstructure and the corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings. Surf Coat Technol 315:314–325. https://doi.org/10.1016/j.surfcoat.2017.02.047

    Article  Google Scholar 

  63. **e Y, Planche M-P, Raoelison R et al (2017) Investigation on the influence of particle preheating temperature on bonding of cold-sprayed nickel coatings. Surf Coat Technol 318:99–105. https://doi.org/10.1016/j.surfcoat.2016.09.037

    Article  Google Scholar 

  64. Sova A, Grigoriev S, Kochetkova A, Smurov I (2014) Influence of powder injection point position on efficiency of powder preheating in cold spray: numerical study. Surf Coat Technol 242:226–231

    Article  Google Scholar 

  65. Villafuerte J (2015) Modern cold spray: materials, process, and applications. Springer

    Book  Google Scholar 

  66. Rokni MR, Nutt SR, Widener CA et al (2017) Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J Therm Spray Technol 26:1308–1355. https://doi.org/10.1007/s11666-017-0575-0

    Article  Google Scholar 

  67. Alidokht SA, Vo P, Yue S, Chromik RR (2017) Cold spray deposition of Ni and WC-reinforced Ni matrix composite coatings. J Therm Spray Technol 26:1908–1921. https://doi.org/10.1007/s11666-017-0636-4

    Article  Google Scholar 

  68. Daneshian B, Assadi H (2014) Impact behavior of intrinsically brittle nanoparticles: a molecular dynamics perspective. J Therm Spray Technol 23:541–550

    Article  Google Scholar 

  69. Hutchings IM (1977) Strain rate effects in microparticle impact. J Phys Appl Phys 10:L179. https://doi.org/10.1088/0022-3727/10/14/001

    Article  Google Scholar 

  70. Helfritch D, Champagne V (2008) A model study of powder particle size effects in cold spray deposition. USAR Laboratory Ed

  71. International Thermal Spray Conference Basel, Switzerland) 2005 ASM international thermal spray society, Deutscher Verband für Schweisstechnik, and international institute of welding. In: Thermal spray connects : Explore its surface potential!, ITSC 2005, international thermal spray conference & exposition, Basel, Switzerland, May 2-4, 2005, conference abstracts. Dusseldorf: DVS

  72. Li W-Y, Zhang G, Guo X et al (2007) Characterizations of cold-sprayed TiN particle-reinforced Al alloy-based composites – from structures to tribological behaviour. Adv Eng Mater 9:577–583. https://doi.org/10.1002/adem.200700085

    Article  Google Scholar 

  73. Zhao L, Tariq N, ul H, Ren Y, et al (2022) Effect of particle size on ceramic particle content in cold sprayed Al-based metal matrix composite coating. J Therm Spray Technol 31:2505–2516. https://doi.org/10.1007/s11666-022-01457-2

    Article  Google Scholar 

  74. Yang Z, Xu J, Qian Y et al (2023) Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray. J Alloys Compd 946:169473. https://doi.org/10.1016/j.jallcom.2023.169473

    Article  Google Scholar 

  75. Fukumoto M, Wada H, Tanabe K et al (2007) Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J Therm Spray Technol 16:643–650. https://doi.org/10.1007/s11666-007-9121-9

    Article  Google Scholar 

  76. Huang C, Li W, **e Y et al (2017) Effect of substrate type on deposition behavior and wear performance of Ni-coated graphite/Al composite coatings deposited by cold spraying. J Mater Sci Technol 33:338–346. https://doi.org/10.1016/j.jmst.2016.11.016

    Article  Google Scholar 

  77. Drehmann R, Grund T, Lampke T et al (2014) Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al2O3 substrates. J Therm Spray Technol 23:68–75. https://doi.org/10.1007/s11666-013-9966-z

    Article  Google Scholar 

  78. Arabgol Z, Vidaller MV, Assadi H et al (2017) Influence of thermal properties and temperature of substrate on the quality of cold-sprayed deposits. Acta Mater 127:287–301. https://doi.org/10.1016/j.actamat.2017.01.040

    Article  Google Scholar 

  79. Luo X-T, Li S-P, Li G-C et al (2021) Cold spray (CS) deposition of a durable silver coating with high infrared reflectivity for radiation energy saving in the polysilicon CVD reactor. Surf Coat Technol 409:126841. https://doi.org/10.1016/j.surfcoat.2021.126841

    Article  Google Scholar 

  80. Yin S, Wang X, Li W et al (2012) Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Appl Surf Sci 259:294–300. https://doi.org/10.1016/j.apsusc.2012.07.036

    Article  Google Scholar 

  81. Bae G, **ong Y, Kumar S et al (2008) General aspects of interface bonding in kinetic sprayed coatings. Acta Mater 56:4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003

    Article  Google Scholar 

  82. Ernst K-R, Braeutigam J, Gaertner F, Klassen T (2013) Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates. J Therm Spray Technol 22:422–432. https://doi.org/10.1007/s11666-012-9871-x

    Article  Google Scholar 

  83. Yin S, Wang X, Li WY, Jie H (2011) Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying. Appl Surf Sci 257:7560–7565. https://doi.org/10.1016/j.apsusc.2011.03.126

    Article  Google Scholar 

  84. Stoltenhoff T, Borchers C, Gärtner F, Kreye H (2006) Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:4947–4960

    Article  Google Scholar 

  85. Singh R, Rauwald K-H, Wessel E et al (2017) Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718. Surf Coat Technol 319:249–259. https://doi.org/10.1016/j.surfcoat.2017.03.072

    Article  Google Scholar 

  86. Bruera A, Puddu P, Theimer S et al (2023) Adhesion of cold sprayed soft coatings: effect of substrate roughness and hardness. Surf Coat Technol 466:129651. https://doi.org/10.1016/j.surfcoat.2023.129651

    Article  Google Scholar 

  87. King PC, Bae G, Zahiri SH et al (2010) An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J Therm Spray Technol 19:620–634. https://doi.org/10.1007/s11666-009-9454-7

    Article  Google Scholar 

  88. Manap A, Nooririnah O, Misran H, Okabe T, Ogawa K (2014) Experimental and SPH study of cold spray impact between similar and dissimilar metals. Surf Eng 30:335–341. https://doi.org/10.1179/1743294413Y.0000000237

  89. Watanabe Y, Yoshida C, Atsumi K et al (2015) Influence of substrate temperature on adhesion strength of cold-sprayed coatings. J Therm Spray Technol 24:86–91

    Google Scholar 

  90. Li W-Y, Zhang C, Guo X et al (2008) Effect of standoff distance on coating deposition characteristics in cold spraying. Mater Des 29:297–304

    Article  Google Scholar 

  91. Chen Q, Yu M, Cao K, Chen H (2022) Thermal conductivity and wear resistance of cold sprayed Cu-ceramic phase composite coating. Surf Coat Technol 434:128135. https://doi.org/10.1016/j.surfcoat.2022.128135

    Article  Google Scholar 

  92. Couto M, Dosta S, Torrell M et al (2013) Cold spray deposition of WC–17 and 12Co cermets onto aluminum. Surf Coat Technol 235:54–61. https://doi.org/10.1016/j.surfcoat.2013.07.011

    Article  Google Scholar 

  93. Alidokht SA, Vo P, Yue S, Chromik RR (2017) Erosive wear behavior of Cold-Sprayed Ni-WC composite coating. Wear 376:566–577

    Article  Google Scholar 

  94. Yan X, Huang C, Chen C et al (2019) Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surf Coat Technol 371:161–171

    Article  Google Scholar 

  95. Peat T, Galloway A, Toumpis A et al (2017) The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying. Appl Surf Sci 396:1623–1634

    Article  Google Scholar 

  96. Triantou KI, Pantelis DI, Guipont V, Jeandin M (2015) Microstructure and tribological behavior of copper and composite copper+alumina cold sprayed coatings for various alumina contents. Wear 336–337:96–107. https://doi.org/10.1016/j.wear.2015.05.003

    Article  Google Scholar 

  97. Kumar S, Reddy SK, Joshi SV (2017) Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates. Surf Coat Technol 318:62–71https://doi.org/10.1016/j.surfcoat.2016.11.047

  98. Ralls AM, Mao B, Menezes PL (2023) Tribological performance of laser shock peened cold spray additive manufactured 316L stainless steel. J Tribol 145:071702. https://doi.org/10.1115/1.4062102

    Article  Google Scholar 

  99. Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press

    Book  Google Scholar 

  100. Guo X, Chen J, Yu H et al (2015) A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surf Coat Technol 268:94–98

    Article  Google Scholar 

  101. Loganathan A, Rengifo S, Hernandez AF et al (2017) Effect of 2D WS 2 addition on cold-sprayed aluminum coating. J Therm Spray Technol 26:1585–1597

    Article  Google Scholar 

  102. Torgerson TB, Harris M, Alidokht S et al (2018) Room and elevated temperature sliding wear behavior of cold sprayed Ni-WC composite coatings. Surf Coat Technol 350:136–145

    Article  Google Scholar 

  103. Zhang Y, Epshteyn Y, Chromik RR (2018) Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: the influence of WC. Tribol Int 123:296–306. https://doi.org/10.1016/j.triboint.2017.12.015

    Article  Google Scholar 

  104. Zhan Y, Zhang G (2004) Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles. Tribol Lett 17:91–98

    Article  Google Scholar 

  105. Deshpande PK, Lin RY (2006) Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Mater Sci Eng A 418:137–145. https://doi.org/10.1016/j.msea.2005.11.036

    Article  Google Scholar 

  106. Chen C, **e Y, Yan X et al (2020) Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Addit Manuf 36:101434. https://doi.org/10.1016/j.addma.2020.101434

    Article  Google Scholar 

  107. Munagala VNV, Chromik RR (2021) The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites. Surf Coat Technol 411:126974. https://doi.org/10.1016/j.surfcoat.2021.126974

    Article  Google Scholar 

  108. Zhang L, Yang S, Lv X, Jie X (2019) Wear and corrosion resistance of cold-sprayed Cu-based composite coatings on magnesium substrate. J Therm Spray Technol 28:1212–1224. https://doi.org/10.1007/s11666-019-00887-9

    Article  Google Scholar 

  109. Liu HH, ul Haq Tariq N, Zhao F, Ren YP, Cui XY, Wang JQ, **ong TY (2024) Influence of irregular Al2O3 content on electrical conductivity, adhesion strength, and tribological properties of cold sprayed Al Al2O3 coatings on polyether ether ketone substrate. J Mater Eng Perform 33(1):79–93https://doi.org/10.1007/s11665-023-07961-y

  110. Koricherla MV, Torgerson TB, Alidokht SA et al (2021) High temperature sliding wear behavior and mechanisms of cold-sprayed Ti and Ti–TiC composite coatings. Wear 476:203746. https://doi.org/10.1016/j.wear.2021.203746

    Article  Google Scholar 

  111. Qiu X, Tariq N, ul H, Wang J et al (2018) Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique. Surf Coat Technol 350:391–400. https://doi.org/10.1016/j.surfcoat.2018.07.039

    Article  Google Scholar 

  112. **e X, Hosni B, Chen C et al (2020) Corrosion behavior of cold sprayed 7075Al composite coating reinforced with TiB2 nanoparticles. Surf Coat Technol 404:126460. https://doi.org/10.1016/j.surfcoat.2020.126460

    Article  Google Scholar 

  113. Wang Y, Normand B, Mary N et al (2014) Microstructure and corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings. Surf Coat Technol 251:264–275. https://doi.org/10.1016/j.surfcoat.2014.04.036

    Article  Google Scholar 

  114. Tao Y, **ong T, Sun C et al (2009) Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy. Appl Surf Sci 256:261–266. https://doi.org/10.1016/j.apsusc.2009.08.012

    Article  Google Scholar 

  115. Spencer K, Fabijanic D, Zhang M-X (2009) The use of Al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf Coat Technol 204:336–344

    Article  Google Scholar 

  116. Da Silva F, Bedoya J, Dosta S et al (2017) Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corros Sci 114:57–71

    Article  Google Scholar 

  117. Meydanoglu O, Jodoin B, Kayali ES (2013) Microstructure, mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process. Surf Coat Technol 235:108–116. https://doi.org/10.1016/j.surfcoat.2013.07.020

    Article  Google Scholar 

  118. Balani K, Laha T, Agarwal A et al (2005) Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surf Coat Technol 195:272–279. https://doi.org/10.1016/j.surfcoat.2004.06.028

    Article  Google Scholar 

  119. Tao Y, **ong T, Sun C et al (2010) Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy. Corros Sci 52:3191–3197. https://doi.org/10.1016/j.corsci.2010.05.023

    Article  Google Scholar 

  120. Ngai S, Ngai T, Vogel F et al (2018) Saltwater corrosion behavior of cold sprayed AA7075 aluminum alloy coatings. Corros Sci 130:231–240. https://doi.org/10.1016/j.corsci.2017.10.033

    Article  Google Scholar 

  121. Bu H, Yandouzi M, Lu C et al (2012) Cold spray blended Al+Mg17Al12 coating for corrosion protection of AZ91D magnesium alloy. Surf Coat Technol 207:155–162. https://doi.org/10.1016/j.surfcoat.2012.06.050

    Article  Google Scholar 

  122. Ma C, Liu X, Zhou C (2014) Cold-sprayed Al coating for corrosion protection of sintered NdFeB. J Therm Spray Technol 23:456–462. https://doi.org/10.1007/s11666-013-9994-8

    Article  Google Scholar 

  123. Daroonparvar M, Helmer A, Ralls AM et al (2023) Study on the corrosion behavior of cold sprayed aluminum-based coatings on Mg-based alloy in chloride containing solution: effect of N2 processing gas temperature. Corros Sci 223:111454. https://doi.org/10.1016/j.corsci.2023.111454

    Article  Google Scholar 

  124. Siddique S, Bernussi AA, Husain SW, Yasir M (2020) Enhancing structural integrity, corrosion resistance and wear properties of Mg alloy by heat treated cold sprayed Al coating. Surf Coat Technol 394:125882. https://doi.org/10.1016/j.surfcoat.2020.125882

    Article  Google Scholar 

  125. Yang X, Li W, Yu S et al (2020) Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings. J Mater Sci Technol 59:117–128. https://doi.org/10.1016/j.jmst.2020.04.041

    Article  Google Scholar 

  126. Wang X, Zhang L, Zhou X et al (2020) Corrosion behavior of Al2O3-reinforced graphene encapsulated Al composite coating fabricated by low pressure cold spraying. Surf Coat Technol 386:125486. https://doi.org/10.1016/j.surfcoat.2020.125486

    Article  Google Scholar 

  127. Chen J, Ma B, Liu G et al (2017) Wear and corrosion properties of 316L-SiC composite coating deposited by cold spray on magnesium alloy. J Therm Spray Technol 26:1381–1392. https://doi.org/10.1007/s11666-017-0583-0

    Article  Google Scholar 

  128. Li W-Y, Zhang C, Liao H et al (2008) Characterizations of cold-sprayed nickel–alumina composite coating with relatively large nickel-coated alumina powder. Surf Coat Technol 202:4855–4860

    Article  Google Scholar 

  129. Al-Hamdani KS, Murray JW, Hussain T et al (2017) Cold sprayed metal-ceramic coatings using satellited powders. Mater Lett 198:184–187. https://doi.org/10.1016/j.matlet.2017.03.175

    Article  Google Scholar 

  130. Kim H-J, Lee C-H, Hwang S-Y (2005) Superhard nano WC–12% Co coating by cold spray deposition. Mater Sci Eng A 391:243–248

    Article  Google Scholar 

  131. Huang R, Sone M, Ma W, Fukanuma H (2015) The effects of heat treatment on the mechanical properties of cold-sprayed coatings. Surf Coat Technol 261:278–288. https://doi.org/10.1016/j.surfcoat.2014.11.017

    Article  Google Scholar 

  132. Li W-Y, Li C-J, Liao H (2006) Effect of annealing treatment on the microstructure and properties of cold-sprayed Cu coating. J Therm Spray Technol 15:206–211. https://doi.org/10.1361/105996306X108066

    Article  Google Scholar 

  133. Ashokkumar M, Thirumalaikumarasamy D, Sonar T et al (2023) Effect of post-processing treatments on mechanical performance of cold spray coating–an overview. J Mech Behav Mater 32:20220271

    Article  Google Scholar 

  134. Bobzin K, Öte M, Wiesner S et al (2017) Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets. IOP Conf Ser Mater Sci Eng 181:012028. https://doi.org/10.1088/1757-899X/181/1/012028

    Article  Google Scholar 

  135. Li K, Liu X, Zhao Y (2019) Research status and prospect of friction stir processing technology. Coatings 9(2):129https://doi.org/10.3390/coatings9020129

  136. Han P, Wang W, Liu Z et al (2022) Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing. J Alloys Compd 907:164426. https://doi.org/10.1016/j.jallcom.2022.164426

    Article  Google Scholar 

  137. Ralls AM, Menezes PL (2023) Understanding the tribo-corrosion mechanisms of friction stir processed steel deposited by high-pressure deposition additive manufacturing process. Int J Adv Manuf Technol 128:823–843. https://doi.org/10.1007/s00170-023-11918-9

    Article  Google Scholar 

  138. Li C-J, Li W-Y (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coat Technol 167:278–283. https://doi.org/10.1016/S0257-8972(02)00919-2

    Article  Google Scholar 

  139. Luo X-T, Wei Y-K, Wang Y, Li C-J (2015) Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying. Mater Des 85:527–533. https://doi.org/10.1016/j.matdes.2015.07.015

    Article  Google Scholar 

  140. Luo X-T, Yao M-L, Ma N et al (2018) Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy. Mater Des 155:384–395. https://doi.org/10.1016/j.matdes.2018.06.024

    Article  Google Scholar 

  141. Bray M, Cockburn A, O’Neill W (2009) The laser-assisted cold spray process and deposit characterisation. Surf Coat Technol 203:2851–2857. https://doi.org/10.1016/j.surfcoat.2009.02.135

    Article  Google Scholar 

  142. Kulmala M, Vuoristo P (2008) Influence of process conditions in laser-assisted low-pressure cold spraying. Surf Coat Technol 202:4503–4508. https://doi.org/10.1016/j.surfcoat.2008.04.034

    Article  Google Scholar 

  143. Wenya Li YX, Cao C, Wang G, Wang F, Yang X (2019) ‘Cold spray +’ as a new hybrid additive manufacturing technology: a literature review. Sci Technol Weld Join 24:420–445. https://doi.org/10.1080/13621718.2019.1603851

    Article  Google Scholar 

  144. Olakanmi EO, Tlotleng M, Meacock C et al (2013) Deposition mechanism and microstructure of laser-assisted cold-sprayed (LACS) Al-12 wt.%Si coatings: effects of laser power. JOM 65:776–783. https://doi.org/10.1007/s11837-013-0611-6

    Article  Google Scholar 

  145. Wang Z, Cai S, Chen W et al (2021) Analysis of critical velocity of cold spray based on machine learning method with feature selection. J Therm Spray Technol 30:1213–1225. https://doi.org/10.1007/s11666-021-01198-8

    Article  Google Scholar 

  146. Canales H, Cano I, Dosta S (2020) Window of deposition description and prediction of deposition efficiency via machine learning techniques in cold spraying. Surf Coat Technol 401:126143

    Article  Google Scholar 

  147. Champagne VK Jr, Ozdemir OC, Nardi A (2021) Practical cold spray. Springer

    Book  Google Scholar 

  148. Valente R, Ostapenko A, Sousa BC, Grubbs J, Massar CJ, Cote DL, Neamtu R (2020) Classifying powder flowability for cold spray additive manufacturing using machine learning. In: 2020 IEEE international conference on big data (big data). IEEE, pp 2919–2928

Download references

Funding

The authors acknowledge the financial support from NASA CAN, grant number NV80NSSC20M0221.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of this review article. The first draft of the manuscript was written by Subin Antony Jose under the supervision of Pradeep L. Menezes. Review and editing were done by Ashish K. Kasar and Pradeep L. Menezes. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep L. Menezes.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, S.A., Kasar, A.K. & Menezes, P.L. Cold spray deposition of cermets: insights into bonding mechanism and critical parameters. Int J Adv Manuf Technol 133, 1–23 (2024). https://doi.org/10.1007/s00170-024-13637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13637-1

Keywords

Navigation