Log in

Ultrasonic and electrical discharge–assisted milling of the Ti-6Al-4 V alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The ultrasonic and electrical discharge–assisted milling (US-EDAM) is a new machining method designed for machining difficult-to-cut materials. It combines two machining technologies: electrical discharge machining (EDM) and conventional milling with ultrasonic vibration. The EDM in the proposed method is used to soften the surface of the material to be machined and thereby reduce the cutting force. In the meanwhile, the ultrasonic vibration of the proposed method is used to improve the discharge efficiency of the EDM and reduce the cutting force. Likewise, the milling in the present method is used to remove the workpiece’s EDM-softened surface accurately and quickly. The effects of different machining methods (including the conventional milling (CM), the ultrasonic-assisted machining (USM), the electrical discharge–assisted machining (EDAM), and the US-EDAM) on the machined material’s surface topography, plastic deformation, microscopic appearance, surface microhardness, and residual stress on the surface were compared for different machining parameters. The results confirmed that the EDM in the US-EDAM softened the surface of the material to be removed and reduced the cutting force. Furthermore, the ultrasonic vibration assistance in the US-EDAM reduced the cutting force with intermittent cutting. Notably, the surface integrity of the machined workpiece under the US-EDAM was better than the ones under the other machining methods. Hence, the US-EDAM demonstrated its capability as a new hybrid machining combining EDM, ultrasonic vibration assistance, and milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and material

The availability of data and material is available as requested to the authors.

Code availability

The code is available as requested to the authors.

References

  1. Pervaiz S, Rashid A, Deiab I, Nicolescu M (2014) Influence of tool materials on machinability of titanium- and nickel-based alloys: a review. Mater Manuf Processes 29(3):219–252. https://doi.org/10.1080/10426914.2014.880460

    Article  Google Scholar 

  2. Shu Z, Huimin T (2011) Current status and prospects of titanium alloy processing. Metal Processing (Cold Processing) 17:2–5

    Google Scholar 

  3. Nurul-Amin AKM, Ismail AF, Nor Khairusshima MK (2007) Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V. J Mater Process Tech 192–193:147–158

    Article  Google Scholar 

  4. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann 60(2):603–626. https://doi.org/10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  5. Liu C, Liu D, Zhang X, He G, Xu X, Ao N, Liu D (2019) On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy. Surf Coat Technol 370:24–34. https://doi.org/10.1016/j.surfcoat.2019.04.080

    Article  Google Scholar 

  6. Mondal A, Roy P, Mitra S (2020) Experimental investigation on electro discharge machining of Ti6Al4V alloy. Adv Mater Process Technol. https://doi.org/10.1080/2374068x.2020.1759913

    Article  Google Scholar 

  7. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300. https://doi.org/10.1016/s0890-6955(03)00162-7

    Article  Google Scholar 

  8. Li CP, Kim M-Y, Islam MM, Ko TJ (2016) Mechanism analysis of hybrid machining process comprising EDM and end milling. J Mater Process Technol 237:309–319. https://doi.org/10.1016/j.jmatprotec.2016.06.022

    Article  Google Scholar 

  9. Li C, Xu M, Yu Z, Huang L, Li S, Li P, Ko TJ (2020) Electrical discharge-assisted milling for machining titanium alloy. J Mater Process Tech 285:116785. https://doi.org/10.1016/j.jmatprotec.2020.116785

    Article  Google Scholar 

  10. Xu M, Li C, Kurniawan R, Park G, Chen J, Ko TJ (2022) Study on surface integrity of titanium alloy machined by electrical discharge-assisted milling. J Mater Process Technol 299:117334. https://doi.org/10.1016/j.jmatprotec.2021.117334

    Article  Google Scholar 

  11. Kawalec M, Przestacki D, Bartkowiak K et al (2008) Laser assisted machining of aluminium composite reinforced by SiC particle. Int Congr Appl Lasers Electro-Opt. https://doi.org/10.2351/1.5061278

    Article  Google Scholar 

  12. Przestacki D, Szymański P (2011) Metallographic analysis of surface layer after turning with laser-assisted machining of composite A359/20SiCp. Composites 2:102–106

    Google Scholar 

  13. Przestacki D, Chwalczuk T (2017) The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web Conf 136:02006. https://doi.org/10.1051/matecconf/201713602006

    Article  Google Scholar 

  14. Kim E, Lee C (2019) A study on the optimal machining parameters of the induction assisted milling with Inconel 718. Materials 12(2):233. https://doi.org/10.3390/ma12020233

    Article  Google Scholar 

  15. López de Lacalle LN, Sánchez JA, Lamikiz A, Celaya A (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng 126(2):274. https://doi.org/10.1115/1.1644548

    Article  Google Scholar 

  16. Chen G, Ren C, Zou Y, Qin X, Lu L, Li S (2018) Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy. Int J Mach Tool Manu. https://doi.org/10.1016/j.ijmachtools.2018.11.001

    Article  Google Scholar 

  17. Chen W, Zheng L, **e W, Yang K, Huo D (2019) Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. J Mater Process Tech 266:339–350

    Article  Google Scholar 

  18. Khosrozadeh B, Shabgard M (2017) Effects of hybrid electrical discharge machining processes on surface integrity and residual stresses of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 93(5–8):1999–2011. https://doi.org/10.1007/s00170-017-0601-x

    Article  Google Scholar 

  19. Roy A, Silberschmidt VV (2014) Ultrasonically assisted machining of titanium alloys. Machining of Titanium Alloys. https://doi.org/10.1007/978-3-662-43902-9_6

    Article  Google Scholar 

  20. Kurniawan R, Thirumalai Kumaran S, Arumuga Prabu V, Zhen Y, Park KM, Kwak YI, Ko TJ (2017) Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (USEDAM) for deburring drilled holes in CFRP composite. Measurement 110:98–115. https://doi.org/10.1016/j.measurement.2017.06.008

    Article  Google Scholar 

  21. Hao T, Yang W, Yong L (2008) Vibration-assisted servo scanning 3D micro EDM. J Micromech Microeng 18(2):025011. https://doi.org/10.1088/0960-1317/18/2/025011

    Article  Google Scholar 

  22. Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1–3):226–228. https://doi.org/10.1016/s0924-0136(03)00224-3

    Article  Google Scholar 

  23. Zhang Q, Zhang J, Deng J, Qin Y, Niu Z (2002) Ultrasonic vibration electrical discharge machining in gas. J Mater Process Tech 129(1–3):135–138. https://doi.org/10.1016/s0924-0136(02)00596-4

    Article  Google Scholar 

  24. Liu J, Jiang X, Han X, Gao Z, Zhang D (2018) Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2847-3

    Article  Google Scholar 

  25. Liao Z, Abdelhafeez A, Li H, Yang Y, Diaz OG, Axinte D (2019) State-of-the-art of surface integrity in machining of metal matrix composites. Int J Mach Tool Manu. https://doi.org/10.1016/j.ijmachtools.2019.05.006

    Article  Google Scholar 

  26. Oosthuizen T, Nunco K, Conradie P, Dimitrov D (2016) The effect of cutting parameters on surface integrity in milling Ti6-Al-4V. S Afr J Ind Eng. https://doi.org/10.7166/27-4-1199

    Article  Google Scholar 

  27. Kurniawan R, Ahmed F, Ali S, Park GC, Ko TJ (2021) Analytical, FEA, and experimental research of 2D-vibration assisted cutting (2D-VAC) in titanium alloy Ti6Al4V. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-07831-8

    Article  Google Scholar 

  28. Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J Mater Process Technol 209(8):4036–4042. https://doi.org/10.1016/j.jmatprotec.2008.09.022

    Article  Google Scholar 

  29. Abdullah A, Shabgard MR, Ivanov A, Shervanyi-Tabar MT (2008) Effect of ultrasonic-assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol 41(3–4):268–280. https://doi.org/10.1007/s00170-008-1476-7

    Article  Google Scholar 

  30. Ahmed F, Ko TJ, Kurniawan R, Kwack Y (2021) Machinability analysis of difficult-to-cut material during ultrasonic vibration-assisted ball end milling. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1944194

    Article  Google Scholar 

  31. Shabgard MR, Alenabi H (2015) Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy. Mater Manuf Processes 30(8):991–1000. https://doi.org/10.1080/10426914.2015.1004686

    Article  Google Scholar 

  32. Zhang M, Zhang D, Geng D, Shao Z, Liu Y, Jiang X (2019) Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti–6Al–4V. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.153266

    Article  Google Scholar 

  33. Liu Y, Liu Z, Wang X, Huang T (2020) Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05060-z

    Article  Google Scholar 

  34. Niu Y, Jiao F, Zhao B, Wang D (2017) Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. Int J Adv Manuf Technol 93(9–12):4345–4356. https://doi.org/10.1007/s00170-017-0871-3

    Article  Google Scholar 

  35. Kitamura T, Kunieda M, Abe K (2015) Observation of relationship between bubbles and discharge locations in EDM using transparent electrodes. Precis Eng 40:26–32. https://doi.org/10.1016/j.precisioneng.2014.09.009

    Article  Google Scholar 

  36. Shitara T, Fujita K, Yan J (2020) Direct observation of discharging phenomena in vibration-assisted micro-electrical discharge machining. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04877-7

    Article  Google Scholar 

  37. Gurrappa I (2003) Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater Charact 51(2–3):131–139. https://doi.org/10.1016/j.matchar.2003.10.006

    Article  Google Scholar 

  38. Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Tech 209(5):2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  39. Potomati F, Giordani EJ, Duarte LT, de Alcântara NG, Bolfarini C (2012) Fatigue behavior and physical characterization of surface-modified Ti-6Al-4V ELI alloy by micro-arc oxidation. Mater Res 15(2):305–311. https://doi.org/10.1590/s1516-14392012005000012

    Article  Google Scholar 

  40. Li H, Wang J (2015) An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int J Adv Manuf Technol 81(1–4):361–369. https://doi.org/10.1007/s00170-015-7245-5

    Article  Google Scholar 

  41. Zhao B, Li P, Zhao C, Wang X (2019) Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling. Ultrasonics. https://doi.org/10.1016/j.ultras.2019.106052

    Article  Google Scholar 

  42. Alharbi N (2022) Experimental study on designing optimal vibration amplitude in ultrasonic assisted incremental forming of AA6061-T6. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2021.07.004

    Article  Google Scholar 

  43. Velásquez JDP, Tidu A, Bolle B, Chevrier P, Fundenberger J-J (2010) Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy. Mat Sci Eng A 527(10–11):2572–2578. https://doi.org/10.1016/j.msea.2009.12.018

    Article  Google Scholar 

  44. Zhang M, Zhang D, Geng D, Liu J, Shao Z, Jiang X (2020) Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V. Mater Des. https://doi.org/10.1016/j.matdes.2020.108658

    Article  Google Scholar 

  45. Liang X, Liu Z, Wang B, Hou X (2018) Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V. Int J Mech Sci 140:1–12. https://doi.org/10.1016/j.ijmecsci.2018.02.031

    Article  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning (grant number NRF-2020R1A2B5B02001755). Furthermore, we acknowledge the financial support provided by the National Natural Science Foundation of China (51905169 and 51775184), the Hunan Education Department Project (18C0323), and the HUNST Project (E51781).

Author information

Authors and Affiliations

Authors

Contributions

Moran Xu: writing—original draft, conceptualization, methodology, software, and formal analysis. Chang** Li: conceptualization, supervision, and methodology. Rendi Kurniawan: measurement, supervision, and data analysis. Jielin Chen: software, and validation. Ye In Kwak: project administration, and validation. Saood Ali: validation. Min Ki Choo: project administration. Tae Jo Ko: conceptualization, resources, supervision, funding acquisition.

Corresponding authors

Correspondence to Rendi Kurniawan or Tae Jo Ko.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Li, C., Kurniawan, R. et al. Ultrasonic and electrical discharge–assisted milling of the Ti-6Al-4 V alloy. Int J Adv Manuf Technol 122, 1897–1917 (2022). https://doi.org/10.1007/s00170-022-10010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10010-y

Keywords

Navigation