Log in

Analysis of robustness and transferability in feature-based grinding burn detection

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grinding burn is a common problem in high-performance industrial manufacturing. Usually destructive (e.g., nital etching) or non-destructive (e.g., Barkhausen noise analysis) methods are used to detect these unwanted changes of the workpiece properties. In recent years, different investigations for the in-process monitoring of grinding burn are conducted in a research environment. One main drawback of most of these detection methods is the lack of robustness and transferability. Therefore, this study provides a new feature-based approach to detect thermal damages in external cylindrical rough grinding using machine learning. To evaluate the robustness properties of the learning algorithm, a large series of experiments is conducted comprising different process parameters and system variables such as workpiece materials, grain sizes and bonding types. Using the burn threshold diagram, a linear separation boundary for parts with and without thermal damage is identified for one process setup. Due to the missing generalization property of the burn threshold analysis, multiple machine learning models are trained and optimized according to three levels of generalization. After achieving an accuracy of more than \(98~\%\) for a constant process setup, the model is expanded to make predictions independently from the values of the system variables showing only a slightly reduced accuracy. In addition, the obtained model is also able to generalize to new values of the system variables by maintaining the high recall of the classification model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Klocke F (2017) Fertigungsverfahren 2: Zerspanung mit geometrisch unbestimmter Schneide. Springer, Berlin Heidelberg,. https://doi.org/10.1007/978-3-662-53310-9

    Article  Google Scholar 

  2. Wegener K, Baumgart C (2018) Grinding burn. In: Chatti S, Laperrire L, Reinhart G, Tolio T (eds) CIRP Encyclopedia of Production Engineering, Springer, Berlin Heidelberg, pp 800–806. https://doi.org/10.1007/978-3-642-35950-7

  3. Rowe WB (2014) Principles of Modern Grinding Technology, 2nd edn. William Andrew Publishing, Oxford. https://doi.org/10.1016/B978-0-323-24271-4.00007-5

  4. ISO14104:2017(E) (2017) Gears-surface temper etch inspection after grinding, chemical method. Standard, International Organization for Standardization

  5. Karpuschewski B, Knoche HJ, Hipke M (2008) Gear finishing by abrasive processes. CIRP Ann 57(2):621–640. https://doi.org/10.1016/j.cirp.2008.09.002

    Article  Google Scholar 

  6. Neslušan M, Čížek J, Kolařík K, Minárik P, Čilliková M, Melikhova O (2017) Monitoring of grinding burn via barkhausen noise emission in case-hardened steel in large-bearing production. J Mater Process Technol 240:104–117. https://doi.org/10.1016/j.jmatprotec.2016.09.015

    Article  Google Scholar 

  7. Lanzagorta J, Urgoiti L, Vazquez PR, Barrenetxea D, Sánchez J (2020) Experimental approach for a grinding burn in-process inspection system based on eddy current. Procedia CIRP 87:391–396, 5th CIRP Conference on Surface Integrity (CSI 2020). https://doi.org/10.1016/j.procir.2020.02.011

  8. Yang Z, Wu H, Yu Z, Huang Y (2014) A non-destructive surface burn detection method for ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process. Meas Sci Technol 25(3):035602

  9. Köhler J (2014) Grinding parameters. In: Laperrière L, Reinhart G (eds) CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 597–601. https://doi.org/10.1007/978-3-642-20617-7_6424

  10. Sauter E, Winter M, Sarikaya E, Wegener K (2021) In-process detection of grinding burn using machine learning. Int J Adv Manuf Tech 115:2281–2297. https://doi.org/10.1007/s00170-021-06896-9

    Article  Google Scholar 

  11. Malkin S (1974) Thermal aspects of grinding: Part 2: Surface temperatures and workpiece burn. J Eng Ind 96(4):1184–1191. https://doi.org/10.1115/1.3438493

    Article  Google Scholar 

  12. Malkin S, Lenz E (1978) Burning limit for surface and cylindrical grinding of steels. Annals of the CIRP 27(1):233–236

    Google Scholar 

  13. Bell A, ** T, Stephenson D (2011) Burn threshold prediction for high efficiency deep grinding. Int J Mach Tools Manuf 51(6):433–438. https://doi.org/10.1016/j.ijmachtools.2011.01.006

    Article  Google Scholar 

  14. Subrahmanya N, Shin YC (2008) Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding. J Manuf Sci Eng 130(3). https://doi.org/10.1115/1.2927439031014

  15. Vits R (1985) Technologische Aspekte der Kühlschmierung beim Schleifen. PhD thesis, Techn. Hochschule Aachen

  16. Steffan M, Haas F, Pierer A, Gentzen J (2017) Adaptive grinding process (AGriPro) prevention of thermal damage using OPC-UA technique and in-situ metrology. Journal of Manufacturing Science and Engineering 139(12)

  17. Jermolajev S, Epp J, Heinzel C, Brinksmeier E (2016) Material modifications caused by thermal and mechanical load during grinding. In: 3rd CIRP Conference on Surface Integrity, vol 45, pp 43–46. https://doi.org/10.1016/j.procir.2016.02.159

  18. Heinzel C, Heinzel J, Guba N, Hsemann T (2021) Comprehensive analysis of the thermal impact and its depth effect in grinding. CIRP Ann 70(1):289–292. https://doi.org/10.1016/j.cirp.2021.04.010

    Article  Google Scholar 

  19. Eda H, Kishi K, Usiu N, Kakino Y, Fujiwara A (1983) In-process detection of grinding burn by means of utilizing acoustic emission. J Japan Soc Precision Eng 49(9):1257–1262. https://doi.org/10.2493/jjspe1933.49.1257

    Article  Google Scholar 

  20. Wang Z, Willett P, DeAguiar PR, Webster J (2001) Neural network detection of grinding burn from acoustic emission. Int J Mach Tools Manuf 41(2):283–309. https://doi.org/10.1016/S0890-6955(00)00057-2

    Article  Google Scholar 

  21. Kwak JS, Ha MK (2004) Neural network approach for diagnosis of grinding operation by acoustic emission and power signals. J Mater Process Technol 147(1):65–71. https://doi.org/10.1016/j.jmatprotec.2003.11.016

    Article  Google Scholar 

  22. de Aguiar PR, Bianchi EC, Canarim RC (2012) Monitoring of Grinding Burn by Acoustic Emission, 2nd edn, IntechOpen, chap 16, pp 341–364. https://doi.org/10.5772/31339

  23. Távora CG, Aguiar PR, Castro BA, Andreoli AL, Bianchi EC (2021) Hinkley criterion applied to detection and location of burn in grinding process. Int J Adv Manuf Tech 113:3177–3188. https://doi.org/10.1007/s00170-021-06828-7

    Article  Google Scholar 

  24. Griffin JM, Chen X (2009) Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming. Int J Adv Manuf Tech 45(11–12):1152. https://doi.org/10.1007/s00170-009-2026-7

    Article  Google Scholar 

  25. Yang Z, Yu Z (2013) Experimental study of burn classification and prediction using indirect method in surface grinding of AISI 1045 steel. Int J Adv Manuf Tech 68(9):2439–2449. https://doi.org/10.1007/s00170-013-4882-4

    Article  Google Scholar 

  26. Gao Z, Lin J, Wang X, Liao Y (2019) Grinding burn detection based on cross wavelet and wavelet coherence analysis by acoustic emission signal. Chinese J Mech Eng 32(1). https://doi.org/10.1186/s10033-019-0384-0

  27. Guo W, Li B, Shen S, Zhou Q (2019) An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder. Int J Adv Manuf Tech 103(5):2837–2847. https://doi.org/10.1007/s00170-019-03748-5

    Article  Google Scholar 

  28. Lajmert P, Sikora M, Kruszynski B, Ostrowski D (2018) Application of principal component analysis and decision trees in diagnostics of cylindrical plunge grinding process. In: Hamrol A, Ciszak O, Legutko S, Jurczyk M (eds) Advances in Manufacturing. Springer International Publishing, Cham, pp 707–716

    Chapter  Google Scholar 

  29. Gao Z, Wang X, Lin J, Liao Y (2017) Online evaluation of metal burn degrees based on acoustic emission and variational mode decomposition. Measurement 103:302–310. https://doi.org/10.1016/j.measurement.2017.02.049

    Article  Google Scholar 

  30. Mahata S, Shakya P, Babu NR (2021) A robust condition monitoring methodology for grinding wheel wear identification using hilbert huang transform. Precis Eng 70:77–91. https://doi.org/10.1016/j.precisioneng.2021.01.009

    Article  Google Scholar 

  31. Hübner HB, Duarte MAV, da Silva RB (2020) Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks. Int J Adv Manuf Tech 110(7–8):1833–1849. https://doi.org/10.1007/s00170-020-05902-w

    Article  Google Scholar 

  32. Dotto FRL, Aguiar PRd, Bianchi EC, Serni PJA, Thomazella R (2006) Automatic system for thermal damage detection in manufacturing process with internet monitoring. J Braz Soc Mech Sci Eng 28:153–160. https://doi.org/10.1590/S1678-58782006000200004

    Article  Google Scholar 

  33. Liu Q, Chen X, Gindy N (2005) Fuzzy pattern recognition of ae signals for grinding burn. Int J Mach Tools Manuf 45(7):811–818. https://doi.org/10.1016/j.ijmachtools.2004.11.002

    Article  Google Scholar 

  34. Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann 56(2):760–782. https://doi.org/10.1016/j.cirp.2007.10.005

    Article  Google Scholar 

  35. Rowe W, ** T (2001) Temperatures in high efficiency deep grinding (HEDG). CIRP Ann 50(1):205–208. https://doi.org/10.1016/S0007-8506(07)62105-2

    Article  Google Scholar 

  36. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes, 1st edn. William Andrew Publishing

  37. Deutsche Edelstahlwerke GmbH (2011) Datenblatt 1.1191/1.1201. Online, last access 2021-09-07, URL https://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/Baustahl/1.1191_1.1201_de.pdf

  38. Rowe WB, Black SCE, Mills B (1996) Temperature control in CBN grinding. Int J Adv Manuf Tech 12(6):387–392. https://doi.org/10.1007/BF01186926

    Article  Google Scholar 

  39. ** T, Stephenson D (2003) Investigation of the heat partitioning in high efficiency deep grinding. International Journal of Machine Tools and Manufacture 43(11), 1129–1134, DOI: 10.1016/S0890-6955(03)00123-8

    Article  Google Scholar 

  40. Rebala G, Ravi A, Churiwala S (2019) An Introduction to Machine Learning. Springer, Cham,. https://doi.org/10.1007/978-3-030-15729-6

    Article  MATH  Google Scholar 

  41. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. CoRR 10(1145/2939672):2939785

    Google Scholar 

  42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay Édouard (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(85):2825–2830

    MathSciNet  MATH  Google Scholar 

  43. Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: A review of Bayesian optimization. Proc IEEE 104(1):148–175. https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  44. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee SI (2020) From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence 2(1)

  45. National Instruments (2019) NIDAQmx for Python. https://nidaqmx-python.readthedocs.io/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Sauter.

Ethics declarations

Competing interests

On parts of this work, a patent was filed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauter, E., Winter, M. & Wegener, K. Analysis of robustness and transferability in feature-based grinding burn detection. Int J Adv Manuf Technol 120, 2587–2602 (2022). https://doi.org/10.1007/s00170-022-08834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08834-9

Keywords

Navigation