Log in

Wear debris in metal-on-metal bearings and modular junctions

What have we learned from the last decades?

Abrieb bei Metall-Metall-Gleitpaarungen

Was haben wir aus den letzten Jahrzehnten gelernt?

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Abstract

Metal-on-metal (MoM) bearing hip arthroplasty saw increasing utilization and peaked in the 1990s and early 2000s. Although the linear and volumetric wear rate for a MoM bearings was lower than its polyethylene counterpart, metal ion particles were found to be approximately 10 × smaller and 500 × higher in quantity compared to polyethylene wear debris. Research into these articulations have demonstrated their relationship to the formation of lymphocyte-mediated adverse local tissue reactions. The work-up for metal particle-associated conditions (metallosis) includes a thorough patient history and physical examination, blood laboratory studies for metal ion concentrations, and advanced imaging studies including magnetic resonance imaging (MRI). The treatment of metallosis and adverse local tissue reactions ranges from close serial observation to extensive debridement and full revision of arthroplasty components, when indicated.

Zusammenfassung

Metall-Metall-Gleitpaarungen (MoM-Gleitpaarungen) in der Hüftendoprothetik wurden zunehmend eingesetzt und erreichten in den 1990er und frühen 2000er Jahren ihren Höhepunkt. Obwohl die lineare und volumetrische Abnutzungsrate für eine MoM-Gleitpaarung geringer war als die ihres Polyethylen-Gegenstücks, wurde festgestellt, dass die Metallionenpartikel im Vergleich zu Polyethylen-Abriebpartikeln etwa 10-fach kleiner waren und gleichzeitig eine 500-fach größere Quantität aufwiesen. Forschungen zu diesen Gleitpaarungen haben gezeigt, dass sie mit der Bildung von durch Lymphozyten vermittelten negativen lokalen Gewebereaktionen in Verbindung stehen. Die Untersuchung auf Metallpartikel-assoziierte Erkrankungen (Metallose) umfasst eine gründliche Anamnese und körperliche Untersuchung, Blutlaboruntersuchungen zur Bestimmung der Metallionenkonzentration sowie bildgebende Untersuchungen einschließlich Magnetresonanztomographie (MRT). Die Behandlung der Metallose und der nachteiligen lokalen Gewebereaktionen reicht von einer engmaschigen Beobachtung bis hin zu einem umfassenden Débridement und einem vollständigen Wechsel der Endoprothesenkomponenten, wenn dies angezeigt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALTR:

Adverse local tissue reaction

ALVAL:

Aseptic lymphocyte-dominant vasculitis-associated lesion

ARMD:

Adverse reaction to metal debris

CoCr:

Cobalt-chromium

CoCrMo:

Cobalt-chromium-molybdenum

CRP:

C‑reactive protein

CT:

Computed tomography

FDA:

Food and Drug Administration (U.S.)

HRA:

Hip resurfacing arthroplasty

MARS:

Metal artifact reduction sequence

MoM:

Metal-on-metal

MoP:

Metal-on-polyethylene

MRI:

Magnetic resonance imaging

THA:

Total hip arthroplasty

References

  1. Australian Orthopaedic Association National Joint Replacement Registry (2010) Annual Report 2010. Adelaide, SA, Australia, Australian Orthopaedic Association

  2. Bayley J, Scott R (1988) Further observations on metal-backed patellar component failure. Clin Orthop 236:82–87

    Article  Google Scholar 

  3. Berry D, Barnes C, Scott R, Cabanela M, Poss R (1994) Catastrophic failure of the polyethylene liner of uncemented acetabular components. J Bone Joint Surg Br 76(4):575–578

    Article  CAS  PubMed  Google Scholar 

  4. Bolognesi M, Ledford CK (2015) Metal-on-metal total hip arthroplasty: patient evaluation and treatment. J Am Acad Orthop Surg 23(12):724–731

    Article  PubMed  Google Scholar 

  5. Bozic K, Kurtz S, Lau E, Ong K, Chiu V, Vail T, Rubash H, Berry D (2009) The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am 91(7):1614–1620

    Article  PubMed  Google Scholar 

  6. Bradberry S, Wilkinson J, Ferner R (2014) Systemic toxicity related to metal hip prostheses. Clin Toxicol 52(8):837–847

    Article  CAS  Google Scholar 

  7. De Martino I, D’Apolito R, Waddell B, McLawhorn A, Sculco P, Sculco T (2017) Early intraprosthetic dislocation in dual-mobility implants: a systematic review. Arthroplast Today 3(3):197–202

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dibra F, Parvataneni H (2016) An unusual presentation of catastrophic failure of hip arthroplasty with a thigh mass. Arthroplast Today 2(2):63–67

    Article  PubMed  PubMed Central  Google Scholar 

  9. Di Laura A, Quinn P, Panagiotopoulou V, Hothi H, Henckel J, Powell J, Berisha F, Amary F, Mosselmans J, Skinner J, Hart A (2017) The chemical form of metal species released from corroded taper junctions of hip implants: synchrotron analysis of patient tissue. Sci Rep 7(1):10952

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doorn P, Campbell P, Worrall J, Benya P, McKellop H, Amstutz H (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42(1):103–111

    Article  CAS  PubMed  Google Scholar 

  11. Eliaz N (2019) Corrosion of metallic biomaterials: a review. Materials (Basel) 12(3):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eltit F, Wang Q, Wang R (2019) Mechanisms of adverse local tissue reactions to hip implants. Front Bioeng Biotechnol 7:176

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fabry C, Langlois J, Hamadouche M, Bader R (2016) Intra-prosthetic dislocation of dual-mobility cups after total hip arthroplasty: potential causes from a clinical and biomechanical perspective. Int Orthop 40(5):901–906

    Article  PubMed  Google Scholar 

  14. Firkins P, Tipper J, Saadatzadeh M, Ingham E, Stone M, Farrar R, Fisher J (2001) Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng 11:143–157

    CAS  PubMed  Google Scholar 

  15. Gillam M, Pratt N, Inacio M, Roughead E, Shakib S, Nicholls S, Graves S (2017) Heart failure after conventional metal-on-metal hip replacements. Acta Orthop 88(1):2–9

    Article  PubMed  Google Scholar 

  16. Hannemann F, Hartmann A, Schmitt J, Lützner J, Seidler A, Campbell P, Delaunay C, Drexler H, Ettema H, García-Cimbrelo E, Huberti H, Knahr K, Kunze J, Langton D, Lauer W, Learmonth I, Lohmann C, Morlock M, Wimmer M, Zagra L, Günther K (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99(3):263–271

    Article  CAS  PubMed  Google Scholar 

  17. Hannon C, Cotter E, Cooper H, Deirmengian C, Rodriguez J, Urban R, Paprosky W, Jacobs J (2020) Adverse local tissue reaction due to mechanically assisted crevice corrosion presenting as late instability following metal-on-polyethylene total hip arthroplasty. J Arthroplasty 35(9):2666–2670

    Article  PubMed  Google Scholar 

  18. Hart A, Hester T, Sinclair K, Powell J, Goodship A, Pele L, Fersht N, Skinner J (2006) The association between metal ions from hip resurfacing and reduced T‑cell counts. J Bone Joint Surg Br 88(4):449–454

    Article  CAS  PubMed  Google Scholar 

  19. https://www.fda.gov/medical-devices/implants-and-prosthetics/metal-metal-hip-implants. Accessed 23 Dec 2022

  20. Kleeman LT, Bala A, Penrose CT, Seyler TM, Wellman SS, Bolognesi MP (2018) Comparison of postoperative complications following metal-on-metal total hip arthroplasty with other hip bearings in medicare population. J Arthroplasty 33(6):1826–1832

    Article  PubMed  Google Scholar 

  21. Koper M, Verdijk R, Bos K (2019) Asymptomatic intraprosthetic dual mobility cup dislocation with increased metal Ion levels. Arthroplast Today 5(1):38–42

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kovochich M, Fung ES, Donovan E, Unice K, Paustenbach D, Finley B (2018) Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions. J Biomed Mater Res Part B Appl Biomater 106(3):986–996

    Article  CAS  Google Scholar 

  23. Liow M, Kwon Y (2017) Metal-on-metal total hip arthroplasty: risk factors for pseudotumours and clinical systematic evaluation. Int Orthop 41(5):885–892

    Article  PubMed  Google Scholar 

  24. Lohmann C, Nuechtern J, Willert H, Junk-Jantsch S, Ruether W, Pflueger G (2007) Hypersensitivity reactions in total hip arthroplasty. Orthopedics 30(9):760–761

    Article  PubMed  Google Scholar 

  25. Malahias M, De Martino I, Gu A, Baral E, Wright T, Sculco P (2019) Complete wear-through of a metal-backed acetabular cup in an ambulatory patient. Arthroplast Today 5(4):394–400

    Article  PubMed  PubMed Central  Google Scholar 

  26. Massin P, Orain V, Philippot R, Farizon F, Fessy M (2012) Fixation failures of dual mobility cups: a mid-term study of 2601 hip replacements. Clin Orthop Relat Res 470(7):1932–1940

    Article  PubMed  Google Scholar 

  27. McKee GK, Watson-Farrar J (1966) Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg Br 48(2):245–259

    Article  CAS  PubMed  Google Scholar 

  28. National Joint Registry for England and Wales (2010) Seventh Annual Report. Hemel Hempstead, Hertfordshire, UK, National Joint Registry Centre

  29. Ryu JJ, Shritriya P (2013) Synergistic mechanisms of bio-tribocorrosion in medical implants. In: Yan Y (ed) Bio-tribocorrosion in biomaterials and medical implants. Elsevier, Amsterdam, pp 25–44

    Chapter  Google Scholar 

  30. Sabah S, Moon J, Jenkins-Jones S, Morgan C, Currie C, Wilkinson J, Porter M, Captur G, Henckel J, Chaturvedi N, Kay P, Skinner J, Hart A, Manisty C (2018) The risk of cardiac failure following metal-on-metal hip arthroplasty. Bone Joint J 100-B(1):20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ude C, Esdaille C, Ogueri K, Ho-Man K, Laurencin S, Nair L, Laurencin C (2021) The mechanism of metallosis after total hip arthroplasty. Regen Eng Transl Med 7(3):247–261

    Article  PubMed  PubMed Central  Google Scholar 

  32. Urish K, Giori N, Lemons J, Mihalko W, Hallab N (2019) Trunnion corrosion in total hip arthroplasty-basic concepts. Orthop Clin North Am 50(3):281–288

    Article  PubMed  PubMed Central  Google Scholar 

  33. Willert H, Buchhorn G, Fayyazi A, Flury R, Windler M, Köster G, Lohmann C (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Article  PubMed  Google Scholar 

  34. **a Z, Ricciardi B, Liu Z, von Ruhland C, Ward M, Lord A, Hughes L, Goldring S, Purdue E, Murray D, Perino G (2016) Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. Nanomedicine Nanotechnol Biol Med 13(3):1205–1217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Goodman MD PhD.

Ethics declarations

Conflict of interest

C. Knecht, L. Polakof, J. Behrens and S.B. Goodman declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knecht, C., Polakof, L., Behrens, J. et al. Wear debris in metal-on-metal bearings and modular junctions. Orthopädie 52, 206–213 (2023). https://doi.org/10.1007/s00132-023-04346-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04346-w

Keywords

Schlüsselwörter

Navigation