Overview: Lipid Metabolism in the Tumor Microenvironment

  • Chapter
  • First Online:
Lipid Metabolism in Tumor Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1316))

Abstract

The tumor microenvironment represents the dynamic network consisting of tumor cells, stromal cells, and multiple lineages of immune subsets. It is well recognized that metabolic crosstalk within the tumor microenvironment (TME) greatly shapes both the composition and functionality of the infiltrated immune cells and therefore critically regulate the antitumor immunity. In general, most solid tumors are considered as lipid-enriched environment, which is beneficial for tumor cell growth and immune escape. Here we briefly summarize the effects of accumulated lipids on tumor cells and immune cells. We also discuss the possibility of targeting lipid metabolism within the TME and potential strategies for optimizing cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Egeblad M, et al. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reina-Campos M, et al. Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 2017;48:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017;27(11):863–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Binnewies M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma X, et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30(1):143–15.6.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson KG, et al. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31(3):311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng C, et al. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 2018;38(1):27.

    Article  Google Scholar 

  8. Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science. 2019;366(6463):eaar5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marra AN, et al. Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci U S A. 2019;116(17):8409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cell Mol Life Sci. 2015;72(20):3931–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J. 2016;35(6):561–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang SC, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15(9):846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silvente-Poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance. Science. 2014;343(6178):1445–6.

    Article  PubMed  Google Scholar 

  15. Qian H, et al. Structural basis for catalysis and substrate specificity of human ACAT1. Nature. 2020;581(7808):333–8.

    Article  CAS  PubMed  Google Scholar 

  16. de Gonzalo-Calvo D, et al. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer. 2015;15:460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bemlih S, et al. Acyl-coenzyme A: cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biol Ther. 2010;9(12):1025–32.

    Article  CAS  PubMed  Google Scholar 

  18. Yue S, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. **ang W, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 2018;9(1):2574.

    Google Scholar 

  20. Currie E, et al. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49.

    Article  PubMed  CAS  Google Scholar 

  22. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279(15):2610–23.

    Article  CAS  PubMed  Google Scholar 

  23. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710–30.

    Article  CAS  PubMed  Google Scholar 

  24. Pascual G, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541(7635):41–5.

    Article  CAS  PubMed  Google Scholar 

  25. Yang P, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 2018;438:76–85.

    Article  CAS  PubMed  Google Scholar 

  26. Nath A, et al. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lopes-Coelho F, et al. Breast cancer metabolic cross-talk: fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 2018;462(Pt B):93–106.

    Article  CAS  PubMed  Google Scholar 

  29. Santi A, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853(12):3211–23.

    Article  CAS  PubMed  Google Scholar 

  30. Nieman KM, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwamoto H, et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 2018;28(1):104–117.e5.

    Article  CAS  PubMed  Google Scholar 

  32. Samudio I, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120(1):142–56.

    Article  CAS  PubMed  Google Scholar 

  33. Liu PP, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene. 2016;35(43):5663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones SF, Infante JR. Molecular pathways: fatty acid synthase. Clin Cancer Res. 2015;21(24):5434–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ginestier C, et al. Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells. 2012;30(7):1327–37.

    Article  CAS  PubMed  Google Scholar 

  36. Kuzu OF, et al. The role of cholesterol in cancer. Cancer Res. 2016;76(8):2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. 2016;35(50):6378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79:43–66.

    Article  CAS  PubMed  Google Scholar 

  39. De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.

    Article  PubMed  CAS  Google Scholar 

  40. Cantelmo AR, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30(6):968–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalucka J, et al. Quiescent endothelial cells upregulate fatty acid beta-oxidation for Vasculoprotection via redox homeostasis. Cell Metab. 2018;28(6):881–894.e13.

    Article  CAS  PubMed  Google Scholar 

  42. Schoors S, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520(7546):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gajewski TF, et al. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vitale I, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30(1):36–50.

    Article  CAS  PubMed  Google Scholar 

  45. Ngambenjawong C, et al. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Su P, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 2020;80(7):1438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu H, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019;11(11):e10698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang D, et al. The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages. Signal Transduct Target Ther. 2020;5:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 2020;8(5):710–21.

    Article  CAS  PubMed  Google Scholar 

  50. Goossens P, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 2019;29(6):1376–1389.e4.

    Article  CAS  PubMed  Google Scholar 

  51. Hossain F, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015;3(11):1236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol. 2020;21(3):298–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.

    Article  CAS  PubMed  Google Scholar 

  54. Raud B, et al. Fatty acid metabolism in CD8(+) T cell memory: challenging current concepts. Immunol Rev. 2018;283(1):213–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32(3):377–391.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Herber DL, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Michelet X, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 2018;19(12):1330–40.

    Article  CAS  PubMed  Google Scholar 

  58. Qin WH, et al. High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice. Gastroenterology. 2020;158(6):1713–27.

    Article  CAS  PubMed  Google Scholar 

  59. Yang W, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma X, et al. Cholesterol negatively regulates IL-9-producing CD8(+) T cell differentiation and antitumor activity. J Exp Med. 2018;215(6):1555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of Zhang Lab for helpful discussions. L.Z. is supported by Natural Science Foundation of China (NSFC 81971466) and Innovation Fund from the Chinese Academy of Medical Sciences (2016-I2M-1-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianjun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, K., Zhang, L. (2021). Overview: Lipid Metabolism in the Tumor Microenvironment. In: Li, Y. (eds) Lipid Metabolism in Tumor Immunity. Advances in Experimental Medicine and Biology, vol 1316. Springer, Singapore. https://doi.org/10.1007/978-981-33-6785-2_3

Download citation

Publish with us

Policies and ethics

Navigation