Immobilization as Sustainable Solutions to Textiles Chemical Processing

  • Chapter
  • First Online:
Sustainable Approaches in Textiles and Fashion

Abstract

Sustainability has become an integral part of textile manufacturing industries in recent years. Enzymes are one of the most sustainable alternatives and advancement in biotechnology has developed more tailored enzymes for various textile process applications. Enzymes have already found commercial success in textile processing, and several life cycle assessment (LCA) studies have evident enzymes as a promising approach to reducing pollution, conserving resources, and lowering costs. The native enzymes, however, do not satisfy the criteria for large-scale use. One of the most promising techniques for highly efficient and economically competent biotechnological processes is enzyme immobilization. Immobilization of enzymes is a valuable method for effective recovery and reuse of expensive enzymes, as well as better enzyme function through improved stability in both storage and operating settings. Reduce, reuse, and recycle are the core tenants of sustainability; thus, immobilized enzymes can be a real sustainable approach for the bio-processing of textiles. In another potential application, the immobilization of enzymes on textiles can add additional functionalities to textile. A few naturally occurring enzymes have recently been discovered to have the potential to be implemented as biological protective finishes after immobilization on textiles. Furthermore, textile materials can serve as sustainable support materials for immobilization, and biocatalysts immobilized textile opens up exciting possibilities for develo** a reliable fiber-based catalytic system for a variety of industrial-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Bar OAM, El-Shishtawy RM, Mohamed SA (2021) Immobilization of camel liver catalase on nanosilver-coated cotton fabric. Catalysts 11(8):900. https://doi.org/10.3390/catal11080900

    Article  CAS  Google Scholar 

  2. Ali S, Zafar W, Shafiq S, Manzoor M (2017) Enzymes immobilization: an overview of techniques, support materials and its applications. Int J Sci Technol Res 6(7):64–72

    CAS  Google Scholar 

  3. Amari A, Alzahrani FM, Alsaiari NS, Katubi KM, Rebah FB, Tahoon MA (2021) Magnetic metal organic framework immobilized laccase for wastewater decolorization. Processes 9(5):774. https://doi.org/10.3390/pr9050774

    Article  CAS  Google Scholar 

  4. Amorium AM, Gasques MDG, Andreaus J, Scharf M (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Annals of the Brazilian Academy of Sciences. 74(3):433–436

    Article  Google Scholar 

  5. Arputharaj A, Raja ASM, Saxena S (2016) Developments in sustainable chemical processing of textiles. In: Muthu SS, Gardetti MA (eds) Green fashion. Environmental footprints and eco-design of products and processes. Springer, pp 217–252. https://doi.org/10.1007/978-981-10-0111-6_9

  6. Arslan M (2011) Immobilization horseradish peroxidase on amine-functionalized glycidyl methacrylate-g-poly (ethylene terephthalate) fibers for use in azo dye decolorization. Polym Bull 66(7):865–879

    Article  CAS  Google Scholar 

  7. Aslam S, Asgher M, Khan NA, Bilal M (2021) immobilization of pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes. J Water Process Eng 40:101971. https://doi.org/10.1016/j.jwpe.2021.101971

  8. Besegatto SV, Costa FN, Damas MSP, Colombi BL, De Rossi AC, Aguiar CRL, Immich APS (2018) Enzyme Treatment at different stages of textile processing: A Review. Ind Biotechnol 14(6):298–307. https://doi.org/10.1089/ind.2018.0018

    Article  CAS  Google Scholar 

  9. Biswas T, Yu J, Nierstrasz V (2021) Effective pretreatment routes of polyethylene terephthalate fabric for digital inkjet printing of enzyme. Adv Mater Interf 8(6). https://doi.org/10.1002/admi.202001882

  10. Blackburn RS (2009) Sustainable textiles Life cycle and environmental impact. Woodhead Publishing Limited, Cambridge, UK, The Textile Institute

    Google Scholar 

  11. Brena B, Gonzalez-Pambo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. In: Guisan JM (ed) Immobilization of enzymes and cells, 2nd edn. Humana Press Inc, Totowa, NJ, pp 15–30

    Google Scholar 

  12. Cao L (2005) Carrier-bound immobilized enzymes: Principles, applications and design. Wiley-Vch Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  13. Capecchi E, Piccinino D, Bizzarri BM, Avitabile D, Pelosi C, Colantonio C, Calabrò G, Saladin R (2019) Enzymes-lignin nanocapsules are sustainable catalysts and vehicles for the preparation of unique polyvalent bio-inks. Biomacromolecules 20. https://doi.org/10.1021/acs.biomac.9b00198

  14. Chang Y, Yang D, Li R, Wang T, Zhu Y (2021) Textile dye biodecolorization by manganese peroxidase: A review. Molecules 26(15):4403. https://doi.org/10.3390/molecules26154403

    Article  CAS  Google Scholar 

  15. Chapman J, E.Ismail A, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts. 8:238. https://doi.org/10.3390/catal8060238

  16. Chen JY, Sun L, Edwards VJ (2014) Regenerated cellulose fiber and film immobilized with lysozyme. Bioceram Dev Appl 4(1). https://doi.org/10.4172/2090-5025.1000078

  17. Chibata I (1996) Industrial applications of immobilized biocatalysts and biomaterials. In: advances in molecular and cell biology, Elsevier Publishing, pp 151–160

    Google Scholar 

  18. Choudhury AK (2014) Sustainable textile wet processing: Applications of enzymes. In: Muthu S (ed) Roadmap to sustainable textiles and clothing: textile science and clothing technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-065-0_7

  19. Coradi M, Zanetti M, Valério A, de Oliveira D, da Silva A, de Souza SMAGU, de Souza AAU (2018) Production of antimicrobial textiles by cotton fabric functionalization and pectinolytic enzyme immobilization. Mater Chem Phys 208:28–34. https://doi.org/10.1016/j.matchemphys.2018.01.019

    Article  CAS  Google Scholar 

  20. Costa SA, Tzanov T, Paar A, Gudelj M, Gubitz GM, Cavaco-Paulo A (2001) Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme Microbial Technology. 28:815–819

    Article  CAS  Google Scholar 

  21. Costa SA, Tzanov T, Paar A, Carneiro F, Gubitz GM, Cavaco- Paulo A (2002) Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotech Lett 24:173–176

    Article  CAS  Google Scholar 

  22. Costa C, Azoia N G, Silva C, Marques EF (2020) Textile industry in a changing world: challenges of sustainable development. U Porto J Eng 6(2):86–97. https://doi.org/10.24840/2183-6493_006.002_0008

  23. Courth K, Binsch M, Ali W, Ingenbosch K, Zorn H, Hoffmann-Jacobsen K, Gutmann JS, Opwis K (2021) Immobilization of peroxidase on textile carrier materials and their application in the bleaching of colored whey. J Dairy Sci 104(2):1548–1559. https://doi.org/10.3168/jds.2019-17110

    Article  CAS  Google Scholar 

  24. Cristovao RO, Silverio SC, Tavares APM, Brígida AIS, Loureiro JM, Boaventura RAR, Macedo EA, Coelho MAZ (2012) Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World J Microbiol Biotechnol 28(9):2827–2838

    Article  CAS  Google Scholar 

  25. Datta S, Christena LR, Rajaram YRS (2013) Enzyme Immobilization: an overview on Techniques and Support Materials. Biotech 3(1):1–9

    Google Scholar 

  26. Dettore C (2011) Comparative life-cycle assessment (LCA) of textile bleaching systems: gentle power bleach vs. conventional bleaching System. In: Scientific poster, AATCC international conference, pp 22–24 March

    Google Scholar 

  27. Dincer A, Telefoncu A (2006) Improving the stability of cellulose by immobilization on modified polyvinyl alcohol-coated chitosan beads. J Molecular Catalysis B: Enzymatic 45:10–14

    Article  Google Scholar 

  28. Dourado F, Bastos M, Mota M, Gama FM (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99:121–131

    Article  CAS  Google Scholar 

  29. Eid MB, Ibrahim NA (2021) Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J Clean Prod 284. https://doi.org/10.1016/j.jclepro.2020.124701

  30. Galante YM, Cristina F (2003) Enzyme applications in detergency and manufacturing industries. Curr Org Chem 7(13):1399–1422

    Article  CAS  Google Scholar 

  31. Gokalp N, Ulker C, Guvenilir YA (2016) Enzymatic ring opening polymerization of caprolactone by using a novel immobilized biocatalyst. Adv Mater Lett 7(2):144–149. https://doi.org/10.5185/amlett.2016.6059

    Article  CAS  Google Scholar 

  32. Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A (2019) Green chemistry in the wet processing of textiles. In: Shahid-ul-Islam, Butola BS (eds) The impact and prospects of green chemistry for textile technology, Woodhead Publishing, ISBN 9780081024911, pp 1–20

    Google Scholar 

  33. https://sustainablecampus.fsu.edu/blog/clothed-conservation-fashion-water assessed on 15th Oct, 2021

  34. https://economicsofwater.weebly.com/water-usage-and-the-textile-industry.html assessed on 15th Oct, 2021

  35. Ibrahim NA, Gouda M, El-Shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761. https://doi.org/10.1002/ap.25821

    Article  CAS  Google Scholar 

  36. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production- a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  37. Kabir SMF, Chakraborty S, Hoque SMA, Mathur K (2019) Sustainability assessment of cotton-based textile wet processing. J. of Cleaner Technology. 1(1):232–246. https://doi.org/10.3390/cleantechnol1010016

    Article  Google Scholar 

  38. Kahoush M, Behary N, Guan J, Cayla A, Mutel B, Nierstrasz V (2021) Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. J Environ Chem Eng 9(4). https://doi.org/10.1016/j.jece.2021.105633

  39. Karimpil JJ, Melo JS, D’Souza SF (2012) Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique. Int J Biol Macromol 50(1):300–302

    Article  CAS  Google Scholar 

  40. Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: A review. Research Journal of Biological Sciences 5(8):565–575

    Article  Google Scholar 

  41. Kiehl K, Straube T, Opwis K, Gutmann JS (2015) Strategies for permanent immobilization of enzymes on textile carriers. Eng Life Sci 15:622–626. https://doi.org/10.1002/elsc201400148

    Article  CAS  Google Scholar 

  42. Kołodziejczak-Radzimska A (2021) Nghiem LD & Jesionowski T (2021) Functionalized Materials as a Versatile Platform for Enzyme Immobilization in Wastewater Treatment. Curr Pollution Rep 7:263–276. https://doi.org/10.1007/s40726-021-00193-5

    Article  CAS  Google Scholar 

  43. Krikstolaitytea V, Kuliesiusa J, Ramanavicieneb A, Mikoliunaitea L, Minkstimieneb AK, Oztekina Y, Ramanavicius A (2014) Enzymatic polymerization of polythiophene by immobilized glucose oxidase. Polymer 55(7):1613–1620. https://doi.org/10.1016/j.polymer.2014.02.003

    Article  CAS  Google Scholar 

  44. Krishnamoorthi S, Banerjee A, Roychoudhury A (2015) Immobilized Enzyme Technology: Potentiality and Prospects. J Enzymol Metabol. 1(1):104

    Google Scholar 

  45. Kumar VS, Meenakshisundaram S, Selvakumar N (2008) Conservation of cellulase enzyme in biopolishing application of cotton fabrics. The Journal of Textile Institute. 99(4):339–346

    Article  CAS  Google Scholar 

  46. Kundu D, Thakur MS, Patra S (2021) Textile fabric processing and their sustainable effluent treatment using enzymes—insights and challenges. In: Tripathi A, Melo JS (eds) Immobilization strategies: biomedical, bioengineering and environmental applications, Springer, pp 645–666. https://doi.org/10.1007/978-981-15-7998-1

  47. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  48. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42(15):6236–6249. https://doi.org/10.1039/C3CS35511J

    Article  CAS  Google Scholar 

  49. Lopes LA, Dias LP, Silva da Costa HP, da Silva X, Neto J, Morais EG, Abreu de Oliveira JT, Vasconcelos IM, de Oliveira D, de Sousa B (2021) Immobilization of a peroxidase from Moringa oleifera Lam. roots (MoPOX) on chitosan beads enhanced the decolorization of textile dyes. Process Biochem 110:129–141. https://doi.org/10.1016/j.procbio.2021.07.022

    Article  CAS  Google Scholar 

  50. Madhu A, Chakraborty JN (2017) Developments in application of enzymes for textile processing: Journal of Cleaner Production. 145:114–133

    CAS  Google Scholar 

  51. Madhu A, Chakraborty JN (2018) Recover and reuse of α- amylase enzyme for cotton fabric desizing using immobilization. Res J Textile Appar 22 (3):271–290. https://doi.org/10.1108/RJTA-12-2017-0052

  52. Madhu A, Chakraborty JN (2019) Bio-Bleaching of Cotton with H2O2 generated from native and immobilized glucose oxidase. AATCC J Res 6(2):7–17. https://doi.org/10.14504/ajr.6.2.2

  53. Martorana A, Bernini C, Valensin D, Sinicropi A, Pogni R, Basosi R, Baratto MC (2011) Insights into the homocoupling reaction of 4-methylamino benzoic acid mediated by Trametes versicolor laccase. Mol BioSyst 7:2967–2969

    Article  CAS  Google Scholar 

  54. Mateo C, Palomo JM, Fernandez-Lorente G,Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40: 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018.

  55. Mendoza-Avila J, Chauhan K, Vazquez-Duhalt R (2020) Enzymatic synthesis of indigo-derivative industrial dyes. Dye Pigment 178:108384 https://doi.org/10.1016/j.dyepig.2020.108384

  56. Miletic N, Nastasovic A, Loos K (20s12) Immobilization of biocatalysts for enzymatic polymerization: possibilities, advantages, applications. Biores Tech 115:126–135. https://doi.org/10.1016/j.biortech.2011.11.054

  57. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotech & Biotechno Equip 29(2):205–220. https://doi.org/10.1080/13102818.2015.1008192

    Article  CAS  Google Scholar 

  58. Mojsov KD (2014) Trends in Bio-processing of Textiles: A review. Advanced Technologies 3(2):135–138

    Google Scholar 

  59. Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA (2021) An overview on biocatalysts immobilization on textiles: preparation, progress and application in wastewater treatment. Chemosphere 279:130481. https://doi.org/10.1016/j.chemosphere.2021.130481

  60. Morsy SAGZ, Tajudin AA, Ali MSMA, Sharif FM (2020) Current development in decolorization of synthetic dyes by immobilized laccases. Front Microbiol 11:572309. https://doi.org/10.3389/fmicb.2020.572309

  61. Muthu SS (2018a) Sustainable innovations in textile chemical processes. Textiles and clothing sustainability, textile science and clothing technology, Springer, Singapore

    Google Scholar 

  62. Muthu SS (2018b) Sustainable innovations in recycled textiles. Textiles and clothing sustainability, textile science and clothing technology, Springer, Singapore

    Google Scholar 

  63. Muthu SS (2019) Water in textiles and fashion: consumption, footpring and life cycle assesment. Woodhead Publishing, UK

    Google Scholar 

  64. Muthu SS (2020) Assessing the environmental impact of textiles and the clothing supply chain, 2nd edn. Woodhead Publishing, United Kingdom, The Textile Institute Book Series. https://doi.org/10.1016/B978-0-12-819783-7.00001-6

    Book  Google Scholar 

  65. Nadaroglu H. (2021) Immobilization and application of industrial enzymes on plant-based new generation polymers. In: Malik S (ed) Exploring plant cells for the production of compounds of interest. Springer, Cham. https://doi.org/10.1007/978-3-030-58271-5_9.

  66. Nayak R, Singh A, Panwar T, Padhye R (2019) A review of recent trends in sustainable fashion and textile production. Current Trends Fash Technol Textile Eng 4(5) https://doi.org/10.19080/CTFTTE.2019.04.555648

  67. Nielsen PH, Skagerlind P (2007) Cost-neutral replacement of surfactants with enzymes. Household and Personal Care Today 4:3–7

    Google Scholar 

  68. Nielsen PH, Kuilderd H, Zhou W, Lu X (2009) Enzyme biotechnology for sustainable textiles. In: Blackburn RS (ed) Sustainable textile: life cycle and environment impact. Woodhead Publishing Limited, CRC Press, pp 113–138

    Google Scholar 

  69. Nierstrasz VA, Cavaco-Paulo A (eds) (2010) Advances in textile biotechnology. Woodhead Publishing Ltd., Cambridge

    Google Scholar 

  70. Norouzian D (2003) Enzyme immobilization: the state of art in biotechnology. Iranian J of Biotech 1(4):197–206

    CAS  Google Scholar 

  71. Opwis K, Straube T, Kiehl K, Gutmann JS (2014) Various strategies for the immobilization of biocatalysts on textile carrier materials. Chem Eng Trans 38:223–228. https://doi.org/10.3303/CET1438038

    Article  Google Scholar 

  72. Osiadacz J, Al-Adhami AJH, Bajraszewska D, Fischer P, Peczyn˜ska-Czoch W. (1999). On the use of trametes versicolor laccase for the conversion of 4-methyl-3 hydroxyanthranilic acid to actinocin chromophore. J Biotechnol 72:141–149

    Google Scholar 

  73. Parisi ML, Fatarella E, Spinelli D, Pogni R, Basosi R (2015) Environmental impact assessment of an eco-efficient production for coloured textiles. J Clean Prod 108:514–524. https://doi.org/10.1016/j.jclepro.2015.06.032

    Article  CAS  Google Scholar 

  74. Paul R, Genesca E (2013) The use of enzymatic techniques in the finishing of technical textiles. In: Gulrajni ML (ed) Advances in dyeing and finishing of technical textiles. Woodhead Publishing Ltd., Cambridge, pp 177–198

    Google Scholar 

  75. Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial Cellulases. Process Biochem 40:767–771

    Article  CAS  Google Scholar 

  76. Prakash O, Jaiswal N (2011) Immobilization of a thermostable amylase on agarose and agar matrices and its application in starch stain removal. World Appl Sci J 13(3):572–577

    CAS  Google Scholar 

  77. Polak J, Jarosz-Wilkolazka A (2012) Fungal laccases as green catalysts for dye synthesis. Process Biochem 47:1295–1307. https://doi.org/10.1016/j.procbio.2012.05.006

    Article  CAS  Google Scholar 

  78. Polak J, Jarosz-Wilkołazka A (2010) Whole-cell fungal transformation of precursors into dyes. Microb Cell Fact 9:51–62. http://www.microbialcellfactories.com/content/9/1/51

  79. Popović N, Stanišić M, Đurđić KI, Prodanović O, Polović N, Prodanović R (2021) Dopamine modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. Environ Technol Innov 22:101399. https://doi.org/10.1016/j.eti.2021.101399

  80. Quartinello F, Tallian C, Auer J, Scho H, Vielnascher R, Weinberger S, Wieland K, Weihs AM, Herrero Rollett A, Lendl B, Teuschl AH, Pellis A, Guebitz GM (2019) Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. J Mater Chem B 7:6592–6603. https://doi.org/10.1039/c9tb01474h

    Article  CAS  Google Scholar 

  81. Sahinbaskan BY, Kahraman MV (2011) Desizing of untreated cotton fabric with the conventional and ultrasonic bath procedures by immobilized and native α-amylase. Starch 63(3):154–159. https://doi.org/10.1002/star.201000109

    Article  CAS  Google Scholar 

  82. Saxena S, Raja ASM, Arputharaj A (2017) Challenges in sustainable wet processing of textiles In: Muthu S (ed) Textiles and clothing sustainability. Textile science and clothing technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2185-5_2

  83. Schroeder M, Schweitzer M, Lenting HBM, Guebitz GM (2004) Chemical modification of protease for wool cuticle scale removal. Biocatal Biotransform 22(5/6):299–305

    Article  CAS  Google Scholar 

  84. Shah T & Halacheva S (2015) Drug-releasing textiles. In: Langenhove L (ed) Advances in smart medical textiles: treatments and health monitoring. Woodhead Publishing Ltd., Cambridge, pp 119–154

    Google Scholar 

  85. Sheikh J, Bramhecha I (2019) Enzymes for green chemical processing of cotton In: Shahid-ul-Islam, Butola BS (ed) The impact and prospects of green chemistry for textile technology. The textile institute book series, Woodhead Publishing, pp 135–160. https://doi.org/10.1016/B978-0-08-102491-1.00006-X

  86. Shekh MdMK, Koh J (2021) Sustainable textile processing by enzyme applications. Intechopen Publication. https://doi.org/10.5772/intechopen.97198

    Article  Google Scholar 

  87. Sheldon RA (2007) Enzyme immobilization: The quest for optimum performance’. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  88. Shen J, Rushforth M, Cavaco-Paulo A, Guebitz G, Lenting H (2007) Development and industrialization of enzymatic shrink-resist process based on modified proteases for wool machine wash-ability. Enzyme Microb Technol 34:1–6

    Google Scholar 

  89. Shen J (2010) Enzymatic treatment of wool and silk fibers. In: Nierstrasz VA, Cavaco-Paulo A (ed). Advances in textile biotechnology. Woodhead Publishing Ltd., Cambridge, pp 171–192

    Google Scholar 

  90. Silva CJSM, Zhang Q, Shen J, Cavaco-Paulo A (2006) Immobilization of proteases with a water-soluble–insoluble reversible polymer for treatment of wool. Enzyme Microb Technol 39:634–640

    Article  CAS  Google Scholar 

  91. Singh RS, Singhania RR, Pandey A, Larroche C (eds) (2019) Advances in enzyme technology. Elsevier Publishing

    Google Scholar 

  92. Soares JC, Moreira PR, Queiroga AC, Morgado JE, Malcata FX, Pintado ME (2011) Application of immobilized enzymes technologies for the textile industry: A review. Biocatal Biotransform 29(6):223–237

    Article  CAS  Google Scholar 

  93. Sousa AC, Oliveira MC, Martins LO, Robalo MP (2018) A sustainable synthesis of asymmetric phenazines and phenoxazinones mediated by CotA-Laccase. Adv Synth Catal 360(575):583. https://doi.org/10.1002/adsc.201701228

    Article  CAS  Google Scholar 

  94. Talekar S, Joshi A, Joshi G, Kamat P, Haripurkar R, Kambale S (2013) Parameters in preparation and characterization of cross-linked enzyme aggregates (CLEAs). RSC Advance 3:12485–12511

    Article  CAS  Google Scholar 

  95. Tripathi A, Melo JS (eds) (2021) Immobilization strategies: biomedical, bioengineering and environmental applications. Springer, pp 645–666. https://doi.org/10.1007/978-981-15-7998-1

  96. Tzanov T, Calafell M, Guebitz G M, Cavaco-Paulo A (2001) Bio-preparation of cotton fabrics. Enzym Microbiol Technol 29:357–362.

    Google Scholar 

  97. Tzanov T, Costa SA, Gubitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93:87–94

    Article  CAS  Google Scholar 

  98. Vasconcelos A, Silva CJSM, Schroeder M, Guebitz GM, Cavaco-Paulo A (2006) Detergent formulations for wool domestic washings containing immobilized enzymes’. Biotechnology Letter 28:725–731

    Article  CAS  Google Scholar 

  99. Wehrschutz-Sigl E, Hasmann A, Guebitz GM (2010) Smart textiles and biomaterials containing enzymes or enzymes substrates In: Nierstrasz VA, Cavaco-Paulo A (eds) Advances in textile biotechnology. Woodhead publishing Ltd., Cambridge, pp 171–192

    Google Scholar 

  100. Wlizłoa K, Polaka J, Jarosz-Wilkołazkaa A, Pognib R, Petricci E (2020) Novel textile dye obtained through transformation of 2-amino-3-methoxybenzoic acid by free and immobilised laccase from a Pleurotus ostreatus strain. Enzym Microb Technol 132:109398 https://doi.org/10.1016/j.enzmictec.2019.109398

  101. Yang W, Zhang N, Wang Q, Wang P, Yu Y (2020) Development of an eco-friendly antibacterial textile: lysozyme immobilization on wool fabric. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02356-y

    Article  Google Scholar 

  102. Yu Y, Yuan J, Wang Q, Fan X, Ni X, Wang P, Cui L (2013) Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohyd Polym 95(2):675–680

    Article  CAS  Google Scholar 

  103. Zdarta J, Jankowska K, Bachosz K, Degórska O, Kaźmierczak K, Nguyen LN, Nghiem LD, Jesionowski T (2021) Enhanced Wastewater Treatment by Immobilized Enzymes. Curr Pollution Rep. 7:167–179. https://doi.org/10.1007/s40726-021-00183-7

    Article  CAS  Google Scholar 

  104. Zhang J, Huang X, Zhang L, Si Y, Guo S, Su H, Liu J (2020) Layer-by-layer assembly for immobilizing enzymes in enzymatic biofuel cells. Sustainable Energy Fuels 4(1):68–79s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Madhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhu, A. (2022). Immobilization as Sustainable Solutions to Textiles Chemical Processing. In: Muthu, S.S. (eds) Sustainable Approaches in Textiles and Fashion. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0538-4_2

Download citation

Publish with us

Policies and ethics

Navigation