Biorefineries: An Integrated Approach for Sustainable Energy Production

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Abstract

Biorefineries represent an integrated approach to facilitate biomass conversion to produce useful fuels, energy, and bulk chemicals from biomass. It employs microbes in the production process, employing methods that have a low carbon footprint. This chapter reviews the various approaches inside a modern biorefinery, from enhanced production of ethanol which can be used as a petrol alternative, to genetic engineering, allowing the production of solvents, bulk chemicals, plastics, and fibers. These advances make production in biorefineries greener as they counter various environmental implications by using lesser energy and being less toxic, producing lesser waste and cost-effective high-end products compared to their traditional manufacturing counterparts. Additionally, the extensive development in applications of biotechnological tools in biorefineries that convert biomass feedstocks to energy and other useful products is also reviewed. From pyrolysis-based processes to gasification, sugar-based biorefineries, and energy crops along with oilseed and lignocellulosic biorefineries. Further, the challenges to integrating higher value chemicals production systems with commodities, for energy and fuel, are also presented, with scope for optimization through resource utilization while minimizing wastes also discussed. Such advances catalyze diversification in feedstocks and products and contribute to sustainability from both economic and environmental perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBH:

Cellobiohydrolase

crRNA:

CRISPR RNA

DBS:

Double-stranded breaks

DME:

Dimethyl ether

EG:

Endoglucanase

GalP:

Galactose permease

GPI:

Glycosylphosphatidylinositol

IEA:

International Energy Agency

LCF:

Lignocellulose feedstock

PEP:

Phosphoenolpyruvate

PHA:

Polyhydroxyalkanoates

PTS:

Phosphotransferase system

RNAi:

RNA interference

SSF:

Simultaneous saccharification and fermentation

TAG:

Triglycerides

TALENs:

Transcription activator-like effectors nucleases

ZNFs:

Zinc finger

References

  • Agrawal K, Verma P (2020) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. In: Biomass conversion and biorefinery, pp 1–20

    Google Scholar 

  • Agrawal K, Verma P (2021) Fungal metabolites: a recent trend and its potential biotechnological applications. In: Singh J, Gehlot P (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 1–14

    Google Scholar 

  • Agrawal K, Bhatt A, Bhardwaj N, Kumar B, Verma P (2020) Algal biomass: potential renewable feedstock for biofuels production–part I. In: Srivastava N, Srivastava M, Mishra P, Gupta V (eds) Biofuel production technologies: critical analysis for sustainability. Clean energy production technologies. Springer, Singapore, pp 203–237

    Chapter  Google Scholar 

  • Alam A, Agrawal K, Verma P (2021) Fungi and its by-products in food industry: an unexplored area. In: Arora PK (ed) Microbial products for health, environment and agriculture, microorganisms for sustainability, vol 31. Springer, Singapore, pp 103–120

    Chapter  Google Scholar 

  • Amaro TM, Rosa D, Comi G, Iacumin L (2019) Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Front Microbiol 10:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Amoah J, Kahar P, Ogino C, Kondo A (2019) Bioenergy and biorefinery: feedstock, biotechnological conversion, and products. Biotechnol J 14(6):1800494

    Article  Google Scholar 

  • Arora K, Kumar P, Bose D, Li X, Kulshrestha S (2021) Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 11(6):1–24

    Article  Google Scholar 

  • Bhardwaj N, Verma P (2021) Microbial xylanases: a hel** module for the enzyme biorefinery platform. In: Srivastava N, Srivastava M (eds) Bioenergy research: evaluating strategies for commercialization and sustainability. Wiley-VCH, Hoboken, pp 129–152

    Chapter  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8(1):1–34

    Article  CAS  Google Scholar 

  • Börgel D, van den Berg M, Hüller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R (2012) Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab Eng 14(4):412–426

    Article  PubMed  Google Scholar 

  • Bose D, Dey A, Banerjee T (2020a) Aspects of bioeconomy and microbial fuel cell technologies for sustainable development. Sustainability 13(3):107–118

    Article  Google Scholar 

  • Bose D, Rawat R, Bahuguna R, Vijay P, Gopinath M (2020b) Sustainable approach to wastewater treatment and bioelectricity generation using microbial fuel cells. Current developments in biotechnology and bioengineering. Elsevier, In, pp 37–50

    Google Scholar 

  • Bose D, Saini DK, Yadav M, Shrivastava S, Parashar N (2021a) Review of sustainable grid-independent renewable energy access in remote communities of India. Integr Environ Assess Manag 17(2):364–375

    Article  PubMed  Google Scholar 

  • Bose D, Saini DK, Yadav M, Shrivastava S, Parashar N (2021b) Decentralized solar energy access and assessment of performance parameters for rural communities in India. Sustain Climate Change 14(2):103–114

    Article  Google Scholar 

  • Bose D, Santra M, Sanka RVSP, Krishnakumar B (2021c) Bioremediation analysis of sediment-microbial fuel cells for energy recovery from microbial activity in soil. Int J Energy Res 45(4):6436–6445

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  • Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications–optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 135:544–554

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Agrawal K, Verma P (2021) Chicken feathers: a treasure cove of useful metabolites and value-added products. Environ Sustain 4(2):231–243

    Article  CAS  Google Scholar 

  • Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefin 3(5):534–546

    Article  CAS  Google Scholar 

  • Corona A, Parajuli R, Ambye-Jensen M, Hauschild MZ, Birkved M (2018) Environmental screening of potential biomass for green biorefinery conversion. J Clean Prod 189:344–357

    Article  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2018) Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol 247:1144–1154

    Article  PubMed  Google Scholar 

  • Detroy RW (2018) Bioconversion of agricultural biomass to organic chemicals. In: Organic chemicals from biomass. CRC Press, Boca Raton, pp 19–43

    Chapter  Google Scholar 

  • Diep NQ, Sakanishi K, Nakagoshi N, Fujimoto S, Minowa T, Tran XD (2012) Biorefinery: concepts, current status, and development trends. Int J Biomass Renew 1(2):1–8

    Google Scholar 

  • Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS (2020) Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv 43:107554

    Article  CAS  PubMed  Google Scholar 

  • Gal J (2008) The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857—a review and analysis 150 yr later. Chirality 20(1):5–19

    Article  CAS  PubMed  Google Scholar 

  • Ghodke PK, Sharma AK, Pandey JK, Chen WH, Patel A, Ashokkumar V (2021) Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. J Environ Manag 298:113450

    Article  CAS  Google Scholar 

  • Goswami RK, Agrawal K, Mehariya S, Molino A, Musmarra D, Verma P (2020) Microalgae-based biorefinery for utilization of carbon dioxide for production of valuable bioproducts. In: Kumar A, Sharma S (eds) Chemo-biological systems for CO2 utilization. CRC Press, Boca Raton, pp 203–228

    Chapter  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2021) Multifaceted role of microalgae for municipal wastewater treatment: a futuristic outlook towards wastewater management. Clean Soil Air Water, 2100286

    Google Scholar 

  • Goswami RK, Mehariya S, Karthikeyan OP, Gupta VK, Verma P (2022a) Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: a flexible concept for sustainable environment. J Clean Prod 339:30654

    Article  Google Scholar 

  • Goswami RK, Mehariya S, Karthikeyan OP, Verma P (2022b) Influence of carbon sources on biomass and biomolecule accumulation in Picochlorum sp. cultured under the Mixotrophic condition. Int J Environ Res Public Health 19(6):3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2022c) Microalgae Dunaliella as biofuel feedstock and β-carotene production: an influential step towards environmental sustainability. Energy Convers Manag X 13:100154

    CAS  Google Scholar 

  • Gunukula S, Klein SJ, Pendse HP, DeSisto WJ, Wheeler MC (2018) Techno-economic analysis of thermal deoxygenation based biorefineries for the coproduction of fuels and chemicals. Appl Energy 214:16–23

    Article  CAS  Google Scholar 

  • Kapoor L, Bose D, Mekala A (2017) Biomass pyrolysis in a twin-screw reactor to produce green fuels. Biofuels 11:101–107

    Article  Google Scholar 

  • Katakojwala R, Mohan SV (2021) A critical view on the environmental sustainability of biorefinery systems. Curr Opin Green Sustain Chem 27:100392

    Article  CAS  Google Scholar 

  • Kolosok S, Myroshnychenko I, Mishenina H, Yarova I (2021) Renewable energy innovation in Europe: energy efficiency analysis. In: E3S web of conferences, vol. 234. EDP Sciences, pp 00021

    Google Scholar 

  • Koyande AK, Show PL, Guo R, Tang B, Ogino C, Chang JS (2019) Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered 10(1):574–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Verma P (2020a) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore, pp 59–83

    Chapter  Google Scholar 

  • Kumar B, Verma P (2020b) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Article  CAS  Google Scholar 

  • Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, Kim J, Van Mooy BA, Bhattacharya D, Falkowski PG (2015) Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci U S A 112(2):412–417

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski I (2018) Bioeconomy: sha** the transition to a sustainable, biobased economy. Springer Nature, p 356

    Google Scholar 

  • Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 108:128–133

    Article  CAS  PubMed  Google Scholar 

  • McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO (2018) Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system. Metab Eng 48:233–242

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ET, Mundhada H, Landberg J, Cann I, Mackie RI, Nielsen AT, Herrgård MJ, Feist AM (2019) Generation of an E. coli platform strain for improved sucrose utilization using adaptive laboratory evolution. Microb Cell Factories 18(1):1–14

    Article  CAS  Google Scholar 

  • Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7(1):1–8

    Article  Google Scholar 

  • Rathore V, Newalkar BL, Badoni RP (2016) Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy Sustain Dev 31:24–49

    Article  CAS  Google Scholar 

  • Regassa H, Bose D, Mukherjee A (2021) Review of microorganisms and their enzymatic products for industrial bioprocesses. Ind Biotechnol 17(4):214–226

    Article  CAS  Google Scholar 

  • Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457

    Article  CAS  Google Scholar 

  • Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121

    Article  CAS  PubMed  Google Scholar 

  • Shylesh S, Gokhale AA, Ho CR, Bell AT (2017) Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Acc Chem Res 50(10):2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553

    Article  CAS  Google Scholar 

  • Tran TTV, Kaiprommarat S, Kongparakul S, Reubroycharoen P, Guan G, Nguyen MH, Samart C (2016) Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Manag 52:367–374

    Article  CAS  PubMed  Google Scholar 

  • Umar M, Zia-ul-haq HM, Ali S, Yusliza MY (2021) Post COVID-19 development of sustainable production and consumption systems. In: Sustainable production and consumption systems. Springer, Singapore, pp 59–86

    Chapter  Google Scholar 

  • Verma P (2022) Industrial microbiology and biotechnology. Springer

    Google Scholar 

  • Wenger J, Stern T (2019) Reflection on the research on and implementation of biorefinery systems—a systematic literature review with a focus on feedstock. Biofuels Bioprod Biorefin 13(5):1347–1364

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004-1992). National Renewable Energy Lab., Golden, CO

    Google Scholar 

  • Xu C, Ferdosian F (2017) Structure and properties of lignin. In: Conversion of lignin into bio-based chemicals and materials. Springer, Berlin, pp 1–12

    Chapter  Google Scholar 

  • Xu QS, Yan YS, Feng JX (2016) Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels 9(1):1–18

    Article  Google Scholar 

  • Yu LP, Wu FQ, Chen GQ (2019) Next-generation industrial biotechnology-transforming the current industrial biotechnology into competitive processes. Biotechnol J 14(9):1800437

    Article  Google Scholar 

  • Zhang W, Zhang T, Song M, Dai Z, Zhang S, **n F, Dong W, Ma J, Jiang M (2018) Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol. ACS Synth Biol 7(12):2803–2811

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, D., Bhattacharya, R., Rizvi, A., Poonia, A., Saraf, D., Ghodke, P. (2022). Biorefineries: An Integrated Approach for Sustainable Energy Production. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4316-4_8

Download citation

Publish with us

Policies and ethics

Navigation