Stem Cell Safety and Sterility Testing: A Promising Approach in Regenerative Medicine

  • Chapter
  • First Online:
Stem Cell Production

Abstract

Stem cells and their derivatives are considered as most sought-after and well-received therapeutic agents in the field of regenerative medicines. As we know, stem cells are naïve cells which have the ability to differentiate into multiple lineages, thus making them an ideal candidate for cell-based therapeutics. In the field of clinical research especially in transplantation studies, stem cells play a very crucial and specific role. The transplantation experiments/studies demand heavy use of immunosuppressive agents in the patient for appropriate grafting and acclimatization of the tissue into the recipient’s body. If the transplanted cells/tissue/cell-derived product is contaminated, it can lead to the deterioration of the graft. Like other cells, stem cells also have issues regarding safety and sterility. If the sterility of stem cells is compromised at any stage of therapeutic application, it renders the entire process unfit to proceed. As the field of cell-based therapies is expanding with new laboratories and manufacturers budding every day, it has become important that such industries and labs should have a thorough comprehension of the regulatory guidelines that govern the microbiological and non-microbiological testing of stem cell-based therapeutics. In this chapter, we are going to discuss the importance of stem cells as therapeutic agents with an overview of how to ensure safety, sterility, and efficacy of such therapies. We have attempted to highlight the importance of numerous regulations such as that of the Food and Drug Administration (FDA) and multifaceted areas like Good Manufacturing Practices (GMPs) and several other regulating bodies which have provided us with internationally acceptable laws to ensure the safe and efficient usage of stem cells as therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agostini F, Rossi FM, Aldinucci D, Battiston M, Lombardi E, Zanolin S et al (2018) Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno-free media. Stem Cell Res Ther 9(1):1–16

    Google Scholar 

  • Aly RM (2020) Current state of stem cell-based therapies: an overview. Stem cell Investig 7:8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alzahrani FA, Saadeldin IM, Ahmad A, Kumar D, Azhar EI, Siddiqui AJ et al (2020) The potential use of mesenchymal stem cells and their derived exosomes as immunomodulatory agents for COVID-19 patients. Stem Cells Int 2020

    Google Scholar 

  • Badyra B, Sułkowski M, Milczarek O, Majka M (2020) Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 9(10):1174–1189

    PubMed  PubMed Central  Google Scholar 

  • Barile MF (1981) Mycoplasma infections of cell cultures. ISR J Med Sci 17(7):555–562

    CAS  PubMed  Google Scholar 

  • Barone PW, Wiebe ME, Leung JC, Hussein ITM, Keumurian FJ, Bouressa J et al (2020) Viral contamination in biologic manufacture and implications for emerging therapies. Nat Biotechnol 38(5):563–572. https://doi.org/10.1038/s41587-020-0507-2

    Article  CAS  PubMed  Google Scholar 

  • Baust JM, Buehring GC, Campbell L, Elmore E, Harbell JW, Nims RW et al (2017) Best practices in cell culture: an overview. In Vitro Cell Dev Biol Anim 53(8):669–672

    CAS  PubMed  Google Scholar 

  • Bayot ML, King KC (2020) Biohazard levels. StatPearls [Internet]

    Google Scholar 

  • Blood, Isolate RNA from Whole (2004) New products for molecular biology. Mol Biotechnol 26

    Google Scholar 

  • Borchsenius SN, Vishnyakov IE, Chernova OA, Chernov VM, Barlev NA (2020) Effects of Mycoplasmas on the host cell signaling pathways. Pathogens 9(4):308

    CAS  PubMed Central  Google Scholar 

  • Buckingham L (2019) Molecular diagnostics: fundamentals, methods and clinical applications. FA Davis

    Google Scholar 

  • Catalina P, Cobo F, Cortés JL, Nieto AI, Cabrera C, Montes R et al (2007) Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review. Cell Biol Int 31(9):861–869

    CAS  PubMed  Google Scholar 

  • Chatterjee C, Schertl P, Frommer M, Ludwig-Husemann A, Mohra A, Dilger N et al (2021) Rebuilding the hematopoietic stem cell niche: recent developments and future prospects. Acta Biomater

    Google Scholar 

  • Choudhary P, Booth H, Gutteridge A, Surmacz B, Louca I, Steer J et al (2017) Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med 6(2):490–501. https://doi.org/10.5966/sctm.2016-0088

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Watt FM (2018) Defining adult stem cells by function, not by phenotype. Annu Rev Biochem 87:1015–1027. https://doi.org/10.1146/annurev-biochem-062917-012341

    Article  CAS  PubMed  Google Scholar 

  • Cobo F, Cortes JL, Cabrera C, Nieto A, Concha A (2007) Microbiological contamination in stem cell cultures. Cell Biol Int 31(9):991–995. https://doi.org/10.1016/j.cellbi.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  • Coco-Martin RM, Pastor-Idoate S, Jimeno JCP (2021) Cell therapy replacement for retinal and optic nerve diseases: cell sources, clinical trials and challenges.

    Google Scholar 

  • Cook G, Cai C (2018) Multivariate analysis and the pharmaceutical regulatory framework. Multivariate Anal Pharm Ind:421–434

    Google Scholar 

  • Crook JM, Hei D, Stacey G (2010) The international stem cell banking initiative (ISCBI): raising standards to bank on. In Vitro Cell Dev Biol Anim 46(3-4):169–172. https://doi.org/10.1007/s11626-010-9301-7

    Article  PubMed  Google Scholar 

  • Cyranoski D (2018) ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557(7706):619–619

    CAS  PubMed  Google Scholar 

  • Cyranoski D (2019) Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565(7737):544–546

    CAS  PubMed  Google Scholar 

  • D’Apolito D, D’Aiello L, Pasqua S, Pecoraro L, Barbera F, Douradinha B et al (2020) Strategy and validation of a consistent and reproducible nucleic acid technique for mycoplasma detection in advanced therapy medicinal products. Biologicals 64:49–57

    PubMed  Google Scholar 

  • D’Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G et al (2020) Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 14(5):701–713

    PubMed  Google Scholar 

  • da Silva Barcelos L, Castro PR, Straessler ET, Kränkel N (2021) Types and origin of stem cells. In: Stem cell therapy for vascular diseases. Springer, pp 33–68

    Google Scholar 

  • Dabrazhynetskaya A, Volokhov DV, Lin T-L, Beck B, Gupta RK, Chizhikov V (2013) Collaborative study report: evaluation of the ATCC experimental mycoplasma reference strains panel prepared for comparison of NAT-based and conventional mycoplasma detection methods. Biologicals 41(6):377–383

    PubMed  Google Scholar 

  • Davies LC, Heldring N, Kadri N, Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35(3):766–776. https://doi.org/10.1002/stem.2509

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira TFP, Fonseca AA Jr, Camargos MF, de Oliveira AM, Cottorello ACP, dos Reis Souza A et al (2013) Detection of contaminants in cell cultures, sera and trypsin. Biologicals 41(6):407–414

    PubMed  Google Scholar 

  • Deasy BM, Anderson JE, Zelina S (2013) Regulatory issues in the therapeutic use of stem cells. Regenerative medicine and tissue engineering. IntechOpen

    Google Scholar 

  • Detela G, Lodge A (2019) EU regulatory pathways for ATMPs: standard, accelerated and adaptive pathways to marketing authorisation. Mol Ther Methods Clin Dev 13:205–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit A, Alexandrescu S, Boyer D, Graf EH, Vargas SO, Silverman M (2017) Mycoplasma hominis empyema in an 18-year-old stem cell and lung transplant recipient: case report and review of the literature. J Pediatric Infect Dis Soc 6(4):e173–e176

    PubMed  Google Scholar 

  • Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K et al (2020) Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun 11(1):1–14

    Google Scholar 

  • dos Santos PB, Léo P, de Souza Oliveira RP, Stephano MA (2021) Mammalian cell culture technology. In: Pharmaceutical biotechnology. CRC Press, pp 195–223

    Google Scholar 

  • Dreolini L, Cullen M, Yung E, Laird L, Webb JR, Nelson BH et al (2020) A rapid and sensitive nucleic acid amplification technique for mycoplasma screening of cell therapy products. Mol Ther Methods Clin Dev 17:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler HG, Uphoff CC (2002) Mycoplasma contamination of cell cultures: incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39(2):75–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler HG, Gignac SM, Hu Z-B, Hopert A, Fleckenstein E, Voges M, Uphoff CC (1994) Treatment of mycoplasma contamination in a large panel of cell cultures. In Vitro Cell Dev Biol Anim 30(5):344–347

    Google Scholar 

  • EDQM (2012) EDQM Council of Europe. 2012. Mycoplasmas in European Pharmacopoeia. EDQM Council of Europe, Strasbourg, France

    Google Scholar 

  • EMA (2008) European Medicines Agency. ICH guideline Q10 on pharmaceutical quality system

    Google Scholar 

  • England MR, Stock F, Gebo JET, Frank KM, Lau AF (2019) Comprehensive evaluation of compendial USP< 71>, BacT/Alert Dual-T, and Bactec FX for detection of product sterility testing contaminants. J Clin Microbiol 57(2):e01548–e01518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esber HJ, Payne IJ, Bogden AE (1973) Variability of hormone concentrations and ratios in commercial sera used for tissue culture. J Natl Cancer Inst 50(2):559–562

    CAS  PubMed  Google Scholar 

  • Fatma H, Siddique HR (2021) Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer. Expert Rev Anticancer Ther:1–12

    Google Scholar 

  • FDA (2004) United States Food and Drug Administration. Guidance for industry: sterile drug products produced by aseptic processing—current good manufacturing practice

    Google Scholar 

  • FDA (2006) Guidance for industry quality systems approach to pharmaceutical CGMP regulations https://www.fda.gov/media/71023/download

  • FDA (2011) United States Food and Drug Administration. Guidance for industry: process validation: general principles and practices

    Google Scholar 

  • FDA (2017). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/deviation-reporting-human-cells-tissues-and-cellular-and-tissue-based-products-regulated-solely

  • FDA (2018) United States Food and Drug Administration. Chemistry, manufacturing, and control (CMC) information for human gene therapy investigational new drug applications (INDs)—draft guidance for industry.

    Google Scholar 

  • FDA (2019a) United States Food and Drug Administration. Code of Federal Regulations Title 21, section 211.22: responsibilities of quality control unit (21CFR211.22)

    Google Scholar 

  • FDA (2019b) United States Food and Drug Administration. Code of Federal Regulations Title 21, section 211.192: production record review (21CFR211.192)

    Google Scholar 

  • Fountain D, Ralston M, Higgins N, Gorlin JB, Uhl L, Wheeler C et al (1997) Liquid nitrogen freezers: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37(6):585–591

    CAS  PubMed  Google Scholar 

  • Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy—tips and tools. J Cell Sci 122(Pt 6):753–767. https://doi.org/10.1242/jcs.033837

    Article  CAS  PubMed  Google Scholar 

  • Gebo JET, Lau AF (2020) Sterility testing for cellular therapies: what is the role of the clinical microbiology laboratory? J Clin Microbiol 58(7):e01492–e01419. https://doi.org/10.1128/JCM.01492-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee AP (2018) Regulation of regenerative medicine products. Cardiac Extracellular Matrix:189–198

    Google Scholar 

  • Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111(6):1021–1046

    PubMed  PubMed Central  Google Scholar 

  • Gerő D (2018) Cell-based screening to identify cytoprotective compounds. Drug discovery-concepts to market. IntechOpen

    Google Scholar 

  • Gey GO (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265

    Google Scholar 

  • Guo Y, Yu Y, Hu S, Chen Y, Shen Z (2020) The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 11(5):349. https://doi.org/10.1038/s41419-020-2542-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkins BJ, Abazari A, Mathew AJ (2017) Biopreservation best practices for regenerative medicine GMP manufacturing & focus on optimized biopreservation media. Cell Gene Ther Insights 3(5):345–358

    Google Scholar 

  • Hinz DC (2006) Process analytical technologies in the pharmaceutical industry: the FDA’s PAT initiative. Anal Bioanal Chem 384(5):1036–1042

    CAS  PubMed  Google Scholar 

  • Hirsch C, Schildknecht S (2019) In vitro research reproducibility: kee** up high standards. Front Pharmacol 10:1484–1484. https://doi.org/10.3389/fphar.2019.01484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hocquet D, Sauget M, Roussel S, Malugani C, Pouthier F, Morel P et al (2014) Validation of an automated blood culture system for sterility testing of cell therapy products. Cytotherapy 16(5):692–698

    PubMed  Google Scholar 

  • Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15(2):123–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell C, Douglas K, Cho G, El-Ghariani K, Taylor P, Potok D et al (2015) Guideline on the clinical use of apheresis procedures for the treatment of patients and collection of cellular therapy products. Transfus Med 25(2):57–78

    CAS  PubMed  Google Scholar 

  • ISO (2015a) ISO 9000: quality management. International Standards Organization, Geneva

    Google Scholar 

  • ISO (2015b) ISO 14644–1:2015: cleanrooms and associated controlled environments—Part 1: classification of air cleanliness by particle concentration. International Standards Organization, Geneva

    Google Scholar 

  • Itani LY, Cherry MA, Araj GF (2005) Efficacy of BACTEC TB in the rapid confirmatory diagnosis of mycobacterial infections. A Lebanese tertiary care center experience. Le J Med libanais Lebanese Med J 53(4):208–212

    Google Scholar 

  • Jacobs MR, Mazzulli T, Hazen KC, Good CE, Abdelhamed AM, Lo P et al (2017) Multicenter clinical evaluation of BacT/Alert Virtuo blood culture system. J Clin Microbiol 55(8):2413–2421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan S, Kumar D, Kumar A, Rajpurohit CS, Singh S, Srivastava A et al (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem Biophys Res Commun 482(4):961–967

    CAS  PubMed  Google Scholar 

  • Joshi C, Enver T (2003) Molecular complexities of stem cells. Curr Opin Hematol 10(3):220–228

    CAS  PubMed  Google Scholar 

  • Kashyap MP, Kumar V, Singh AK, Tripathi VK, Jahan S, Pandey A et al (2019) Correction to: differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 56(9):6663–6663

    CAS  PubMed  Google Scholar 

  • Khateb S, Jha S, Bharti K, Banin, E (2021) Cell-based therapies for age-related macular degeneration. Age-related macular degeneration: from clinic to genes and back to patient management 265

    Google Scholar 

  • Khuu HM, Stock F, McGann M, Carter CS, Atkins JW, Murray PR, Read EJ (2004) Comparison of automated culture systems with a CFR/USP-compliant method for sterility testing of cell-therapy products. Cytotherapy 6(3):183–195

    CAS  PubMed  Google Scholar 

  • Kim SC, Lee S, Kim S, Cho O-H, Park H, Yu S-M (2019) Comparison of clinical performance between BacT/Alert Virtuo and BacT/Alert 3D blood culture systems. Ann Lab Med 39(3):278

    PubMed  PubMed Central  Google Scholar 

  • Klein MA, Kadidlo D, McCullough J, McKenna DH, Burns LJ (2006) Microbial contamination of hematopoietic stem cell products: incidence and clinical sequelae. Biol Blood Marrow Transplant 12(11):1142–1149. https://doi.org/10.1016/j.bbmt.2006.06.011

    Article  PubMed  Google Scholar 

  • Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85(1):3–10. https://doi.org/10.1159/000345615

    Article  PubMed  Google Scholar 

  • Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH (2018) Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res 22:36. https://doi.org/10.1186/s40824-018-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamkharbach Y, Bazi F, Haji L, Bennani L, Mourran A, Bouamrani ML (2019) Study of changing statistics model’s influence on the exploitation and conformity of results in the new standard version ISO 14644 part 1. Period Eng Natural Sci 6(2):436–446

    Google Scholar 

  • Langdon SP (2004) Cell culture contamination. Cancer Cell Culture:309–317

    Google Scholar 

  • Lavrentieva A (2018) Essentials in cell culture. In: Cell culture technology. Springer, pp 23–48

    Google Scholar 

  • Levy JH, Neal MD, Herman JH (2018) Bacterial contamination of platelets for transfusion: strategies for prevention. Crit Care 22(1):1–8

    Google Scholar 

  • Li X, **e J, Zhai Y, Fang T, Rao N, Hu S et al (2019) Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells Int 2019:2562981. https://doi.org/10.1155/2019/2562981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim FLWI (2021) Proven and unproven cell therapies–what we have learned so far? All eyes on cell therapy. ISBT Sci Ser 16(3):213–218

    Google Scholar 

  • Lin J, Chen L, Jiang W, Zhang H, Shi Y, Cai W (2019) Rapid detection of low-level HeLa cell contamination in cell culture using nested PCR. J Cell Mol Med 23(1):227–236

    CAS  PubMed  Google Scholar 

  • Liu G, David BT, Trawczynski M, Fessler RG (2020) Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 16(1):3–32

    PubMed  Google Scholar 

  • Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int

    Google Scholar 

  • Lv F-J, Tuan RS, Cheung KMC, Leung VYL (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419

    CAS  PubMed  Google Scholar 

  • Lysák D, Holubová M, Bergerová T, Vávrová M, Cangemi GC, Ciccocioppo R et al (2016) Validation of shortened 2-day sterility testing of mesenchymal stem cell-based therapeutic preparation on an automated culture system. Cell Tissue Bank 17(1):1–9

    PubMed  Google Scholar 

  • Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283. https://doi.org/10.1155/2016/6940283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood A, Ali S (2017) Microbial and viral contamination of animal and stem cell cultures: common contaminants, detection, and elimination. J Stem Cell Res Ther 2(5):1–8

    Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T et al (2017) Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046

    CAS  PubMed  Google Scholar 

  • Marks PW, Witten CM, Califf RM (2017) Clarifying stem-cell therapy’s benefits and risks. N Engl J Med 376(11):1007–1009

    PubMed  Google Scholar 

  • Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P et al (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci 98(14):8012–8017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathen C, Dsouza W (2021) Xeno-Free human Wharton’s jelly mesenchymal stromal cells maintain their characteristic properties after long-term cryopreservation. Cell J (Yakhteh) 23(2):145–153

    Google Scholar 

  • Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Parouchev A et al (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71(4):429–438. https://doi.org/10.1016/j.jacc.2017.11.047

    Article  PubMed  Google Scholar 

  • Mendicino M, Fan Y, Griffin D, Gunter KC, Nichols K (2019) Current state of US Food and Drug Administration regulation for cellular and gene therapy products: potential cures on the horizon. Cytotherapy 21(7):699–724

    PubMed  Google Scholar 

  • Metwally MA, Yassin AS, Essam TM, Hamouda HM, Amin MA (2014) Detection, characterization, and molecular ty** of human Mycoplasma spp. from major hospitals in Cairo, Egypt. Sci World J

    Google Scholar 

  • Mirjalili A, Parmoor E, Moradi Bidhendi S, Sarkari B (2005) Microbial contamination of cell cultures: a 2 years study. Biologicals 33(2):81–85. https://doi.org/10.1016/j.biologicals.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  • Moldenhauer JE (2014) Fundamentals of an environmental monitoring program. PDA

    Google Scholar 

  • Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H et al (2019) Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 10(1):1–13

    Google Scholar 

  • Mummery CL, Van de Stolpe A, Roelen B, Clevers H (2021) Stem cells: scientific facts and fiction. Academic Press

    Google Scholar 

  • Nakamura K, Stempien-Otero A (2020) Stem cells and the future of heart transplantation. Contem Heart Transplant:483–500

    Google Scholar 

  • Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science 212(4493):446–452. https://doi.org/10.1126/science.6451928

    Article  CAS  PubMed  Google Scholar 

  • Netto C, Soccol VT, Sepulveda LM, Timenetsky J (2014) Experimental infection of BHK21 and Vero cell lines with different Mycoplasma spp. Braz J Microbiol 45(4):1513–1519. https://doi.org/10.1590/s1517-83822014000400048

    Article  CAS  PubMed  Google Scholar 

  • Netto C, Soccol VT, Sepulveda LM, Timenetsky J (2015) Experimental infection of BHK21 and Vero cell lines with different Mycoplasma spp. Braz J Microbiol [publication of the Brazilian Society for Microbiology] 45(4):1513–1519. https://doi.org/10.1590/s1517-83822014000400048

    Article  Google Scholar 

  • Nielsen IØ, Groth-Pedersen L, Dicroce-Giacobini J, Jonassen ASH, Mortensen M, Bilgin M et al (2020) Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics 16(9):1–13

    Google Scholar 

  • Nikfarjam L, Farzaneh P (2012) Prevention and detection of Mycoplasma contamination in cell culture. Cell J (Yakhteh) 13(4):203

    Google Scholar 

  • Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F et al (2018) The extracellular vesicles-derived from mesenchymal stromal cells: a new therapeutic option in regenerative medicine. J Cell Biochem 119(10):8048–8073

    CAS  PubMed  Google Scholar 

  • Nübling CM, Baylis SA, Hanschmann K-M, Montag-Lessing T, Chudy M, Kreß J et al (2015) World Health Organization international standard to harmonize assays for detection of mycoplasma DNA. Appl Environ Microbiol 81(17):5694–5702

    PubMed  PubMed Central  Google Scholar 

  • Ong CM, Kathawala Y, Sawalha N (2015) A model for ISO 9000 quality management system maintenance. Qual Manag J 22(2):11–32

    Google Scholar 

  • Padley DJ, Dietz AB, Gastineau DA (2007) Sterility testing of hematopoietic progenitor cell products: a single-institution series of culture-positive rates and successful infusion of culture-positive products. Transfusion 47(4):636–643

    PubMed  Google Scholar 

  • Pamies D, Bal-Price A, Simeonov A, Tagle D, Allen D, Gerhold D et al (2017) Good cell culture practice for stem cells and stem-cell-derived models. ALTEX 34(1):95–132. https://doi.org/10.14573/altex.1607121

    Article  PubMed  Google Scholar 

  • Panch SR, Bikkani T, Vargas V, Procter J, Atkins JW, Guptill V et al (2019) Prospective evaluation of a practical guideline for managing positive sterility test results in cell therapy products. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 25(1):172–178. https://doi.org/10.1016/j.bbmt.2018.08.003

    Article  Google Scholar 

  • Parveen S, Kaur S, David SAW, Kenney JL, WM MC, Gupta RK (2011) Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. Vaccine 29(45):8012–8023

    CAS  PubMed  Google Scholar 

  • Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ (2020) Towards advanced iPSC-based drug development for neurodegenerative disease. Trends Mol Med 27(3):263–279

    PubMed  Google Scholar 

  • Patil AS, Pethe AM (2013) Quality by Design (QbD): a new concept for development of quality pharmaceuticals. Int J Pharmaceutical Qual Assurance 4(2):13–19

    Google Scholar 

  • Petrus-Reurer S, Winblad N, Kumar P, Gorchs L, Chrobok M, Wagner AK et al (2020) Generation of retinal pigment epithelial cells derived from human embryonic stem cells lacking human leukocyte antigen class I and II. Stem Cell Rep 14(4):648–662. https://doi.org/10.1016/j.stemcr.2020.02.006

    Article  CAS  Google Scholar 

  • Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018

    Google Scholar 

  • Pinheiro de Oliveira TF, Fonseca AA Jr, Camargos MF, de Oliveira AM, Pinto Cottorello AC, Souza Ados R et al (2013) Detection of contaminants in cell cultures, sera and trypsin. Biologicals 41(6):407–414. https://doi.org/10.1016/j.biologicals.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4:22. https://doi.org/10.1038/s41536-019-0083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Process Validation (2011) General principles and practices. Guidance for Industry (Jan 2011)

    Google Scholar 

  • Rivera T, Zhao Y, Ni Y, Wang J (2020) Human-induced pluripotent stem cell culture methods under cGMP conditions. Curr Protoc Stem Cell Biol 54(1):e117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roesti D, Goverde M (2019) Microbiological control strategy. Pharmaceutical microbiological quality assurance and control: practical guide for non-sterile manufacturing 1–21

    Google Scholar 

  • Ryan JA (1994) Understanding and managing cell culture contamination. Corning Incorporated

    Google Scholar 

  • Sahu KK, Siddiqui AD, Cerny J (2021) Mesenchymal stem cells in COVID-19: a journey from bench to bedside. Lab Med 52(1):24–35

    PubMed  Google Scholar 

  • Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A (2019) An overview on stem cells in tissue regeneration. Curr Pharm Des 25(18):2086–2098

    CAS  PubMed  Google Scholar 

  • Shafa M, Walsh T, Panchalingam KM, Richardson T, Menendez L, Tian X et al (2020) Long-term stability and differentiation potential of cryopreserved cGMP-compliant human induced pluripotent stem cells. Int J Mol Sci 21(1):108

    CAS  Google Scholar 

  • Shaik S, Wu X, Gimble J, Devireddy R (2018) Effects of decade long freezing storage on adipose derived stem cells functionality. Sci Rep 8(1):1–12

    CAS  Google Scholar 

  • Sharma AK, Singh AK, Waseem M, Kumar S (2020) Animal cell culture. Clinical biochemistry and drug development: from fundamentals to output 7

    Google Scholar 

  • Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130

    CAS  PubMed  Google Scholar 

  • Shroff G, Gupta R (2015) Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci 22(4):208–216. https://doi.org/10.5214/ans.0972.7531.220404

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon RP (1989) Role of endogenous excitatory amino acid neurotransmitters in the pathogenesis and evolution of acute brain injury. Pediatr Infect Dis J 8(12):913–915. https://doi.org/10.1097/00006454-198912000-00041

    Article  CAS  PubMed  Google Scholar 

  • Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim D-H (2017) Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 35(1):77–94

    CAS  PubMed  Google Scholar 

  • Stacey GN, Crook JM, Hei D, Ludwig T (2013) Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 13(4):385–388. https://doi.org/10.1016/j.stem.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  • Sukhanova SM, Zakharova NE (2018) Microbial quality of dehydrated media used in the sterility testing of immunobiological medicinal products. BIOpreparations Prev Diagnosis Treat 18(3):191–197

    Google Scholar 

  • Szabados F, Michels M, Kaase M, Gatermann S (2011) The sensitivity of direct identification from positive BacT/ALERT™(bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 17(2):192–195

    CAS  PubMed  Google Scholar 

  • Ta L, Gosa L, Nathanson DA (2019) Biosafety and biohazards: understanding biosafety levels and meeting safety requirements of a biobank. Biobanking:213–225

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  • Takashima K, Morrison M, Minari J (2021) Reflection on the enactment and impact of safety laws for regenerative medicine in Japan. Stem Cell Rep

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  • Togel FE, Westenfelder C (2010) Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol 6(3):179–183. https://doi.org/10.1038/nrneph.2009.229

    Article  PubMed  Google Scholar 

  • Uhlin E (2019) Human induced pluripotent stem cells in regenerative medicine (Doctoral dissertation, Karolinska Institutet (Sweden))

    Google Scholar 

  • Vaskova EA, Stekleneva AE, Medvedev SP, Zakian SM (2013) “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Nat 5(4):15–21

    CAS  Google Scholar 

  • Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15(1):36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber S, Greiner R, Bartes A, Kavermann H, Knack Y, Deutschmann S (2021) Validation of the MycoTOOL mycoplasma real-time PCR kit

    Google Scholar 

  • Wiemer KE, Anderson A, Stewart B (1998) The importance of water quality for media preparation. Human Reprod 13(Suppl_4):166–172

    Google Scholar 

  • Windsor HM, Windsor GD, Noordergraaf JH (2010) The growth and long term survival of Acholeplasma laidlawii in media products used in biopharmaceutical manufacturing. Biologicals 38(2):204–210. https://doi.org/10.1016/j.biologicals.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Karrow NA, Shandilya UK, Sun L-h, Kitazawa H (2020) In-vitro cell culture for efficient assessment of mycotoxin exposure, toxicity and risk mitigation. Toxins 12(3):146

    CAS  PubMed Central  Google Scholar 

  • Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27(4):523–531. https://doi.org/10.1016/j.stem.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  • Yoshino TP, Bickham U, Bayne CJ (2013) Molluscan cells in culture: primary cell cultures and cell lines. Can J Zool 91(6):391–404

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):1–22

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work.

Funding Source

NA

Declarations

The authors of the manuscript declare no conflicts of interest/competing interests. All data and materials are available in the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vatsa, P. et al. (2022). Stem Cell Safety and Sterility Testing: A Promising Approach in Regenerative Medicine. In: Khan, F.A. (eds) Stem Cell Production. Springer, Singapore. https://doi.org/10.1007/978-981-16-7589-8_9

Download citation

Publish with us

Policies and ethics

Navigation