Stem Cell for Cartilage Repair

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

Several of the age-related joint diseases such as osteoarthritis lead to chondrocyte degeneration and loss of articular cartilage. Chondrocyte after an injury has restricted capacity to repair. The contemporary clinical treatments such as osteochondral transplantation and arthroplasty procedures have shown serious limitations especially for the treatment of extensive full-thickness cartilage defects. Therefore, alternative therapeutic approaches are warranted. Thus, several cell-based therapies using different stem cells have been proposed as a novel treatment approach for cartilage regeneration and repair. During organogenesis in the embryonic period, chondrocytes originate from mesenchymal progenitor cells. Several studies have reported that treatment using stem cells, especially mesenchymal stem cells, is an optimal intervention for cartilage repair rather than implantation of terminally differentiated cells such as chondrocytes. In this chapter, we have highlighted the use of cell-based therapies for the treatment of injured cartilage and discuss advantages and limitations of different stem cells. We also discuss stem cell-based cartilage tissue engineering as a novel therapeutic strategy for the damaged articular cartilage and discussed in-depth the main components of cartilage tissue engineering such as stem cell source, scaffolds used for their seeding and culture, and types of the bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Acryloyl chloride

ACI:

Autologous chondrocyte implantation

ADSCs:

Adipose tissue-derived stem cells

BMDCs:

Bone marrow-derived cells

CH:

Chitosan

COL:

Collagen

CS:

Chondroitin sulfate

CSMA:

Methacrylated chondroitin sulfate

DJDs:

Degenerative-related joint diseases

ECM:

Extracellular matrix

GO:

Graphene oxide

HA:

Hyaluronic acid

OA:

Osteoarthritis

OAT:

Osteochondral autologous transplantation

OCA:

Osteochondral allograft transplantation

OCT:

Osteochondral transplantation

PACI:

Particulated articular cartilage implantation

PBPCs:

Peripheral blood progenitor cells

PC:

Pectin-based

PCEC:

Polycaprolactone-polyethylene glycol

PCL:

Polycaprolactone

PDS:

Poly-p-dioxanone

PECA:

Poly(ethylene glycol) methyl ether-”-caprolactone-acryloyl chloride

PEG:

Poly(ethylene glycol)

PES:

Polyethersulfone

PGA:

Poly(glycolic acid)

PLA:

Polylactic acid

PLCL:

Poly(l-lactide-co-”-caprolactone)

PLGA:

Polylactic-co-glycolic acid

PLLA:

Poly(l-lactide)

PU:

Polyurethane

RA:

Rheumatoid arthritis

RWVs:

Rotating wall vessels

SCPL:

Solvent casting and particulate leaching method

SFs:

Spinner flasks

SMSCs/SF-MSCs:

Synovium fluid-derived mesenchymal stem cells

UCB-MSCs:

Umbilical cord blood-derived mesenchymal stem cells

WJ-MSCs:

Umbilical cord Wharton’s jelly-derived mesenchymal stem cells

References

  • Aleksander-Konert E, Paduszyński P, Zajdel A, Dzierżewicz Z, Wilczok A (2016) In vitro chondrogenesis of Wharton’s jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett 21:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson DE, Williams RJ, DeBerardino TM, Taylor DC, Ma CB, Kane MS, Crawford DC (2017) Magnetic resonance imaging characterization and clinical outcomes after NeoCart surgical therapy as a primary reparative treatment for knee cartilage injuries. Am J Sports Med 45(4):875–883

    Article  PubMed  Google Scholar 

  • Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M, Oliveira JM et al (2016) Knee donor-site morbidity after mosaicplasty – a systematic review. J Exp Orthop 3(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansah P, Vogt S, Ueblacker P, Martinek V, Woertler K, Imhoff AB (2007) Osteochondral transplantation to treat osteochondral lesions in the elbow. J Bone Joint Surg Am 89(10):2188–2194. https://doi.org/10.2106/JBJS.F.00299

    Article  PubMed  Google Scholar 

  • Araki S, Imai S, Ishigaki H, Mimura T, Nishizawa K, Ueba H, Kumagai K et al (2015) Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model. Acta Orthop 86(1):119–126. https://doi.org/10.3109/17453674.2014.958807

    Article  PubMed  PubMed Central  Google Scholar 

  • Armoiry X, Cummins E, Connock M, Metcalfe A, Royle P, Johnston R, Rodrigues J et al (2019) Autologous chondrocyte implantation with chondrosphere for treating articular cartilage defects in the knee: an evidence review group perspective of a NICE single technology appraisal. PharmacoEconomics 37(7):879–886

    Article  PubMed  Google Scholar 

  • Athanasiou KA, Darling EM, Hu JC (2010) Articular cartilage tissue engineering. Morgan & Claypool

    Book  Google Scholar 

  • Azam A, Forster M, Robertson A (2018) Clinical and radiological outcome for Trufit Plug in the treatment of chondral and osteochondral lesions at a minimum of 2 years. J Orthop 15(1):47–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Bami M, Sarlikiotis M, Milonaki M, Koulalis D, Johnson EO, Soucacos PN et al (2020) Superiority of synovial membrane mesenchymal stem cells in chondrogenesis, osteogenesis, myogenesis and tenogenesis in a rabbit model. Injury 51(12):2855–2865. https://doi.org/10.1016/j.injury.2020.03.022

    Article  PubMed  Google Scholar 

  • Barber FA, Dockery WD (2011) A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy 27(1):60–64

    Article  PubMed  Google Scholar 

  • Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. A prospective, randomised study. J Bone Joint Surg – Ser B 87(5):640–645

    Article  CAS  Google Scholar 

  • Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18(4):519–527

    Article  PubMed  Google Scholar 

  • Becher C, Laute V, Fickert S, Zinser W, Niemeyer P, John T, Diehl P et al (2017) Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. J Orthop Surg Res 12(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Benthien JP, Schwaninger M, Behrens P (2011) We do not have evidence based methods for the treatment of cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 19(4):543–552

    Article  PubMed  Google Scholar 

  • Berninger MT, Wexel G, Rummeny EJ, Imhoff AB, Anton M, Henning TD, Vogt S (2013) Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp 75:e4423. https://doi.org/10.3791/4423

    Article  CAS  Google Scholar 

  • Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P, Ziveri G et al (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42(7):1607–1617

    Article  PubMed  Google Scholar 

  • Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA (2011) Enhanced MSC chondrogenesis following delivery of TGF-b3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32: 6425–6434. https://doi.org/10.1016/j.biomaterials.2011.05.03

  • Bianco P, Robey PG (2015) Skeletal stem cells. Development (Cambridge) 142(6):1023–1027

    Article  CAS  Google Scholar 

  • Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2015) Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther 6(1):84. https://doi.org/10.1186/s13287-015-0075-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady MA, Vaze R, Amin HD, Overby DR, Ethier CR (2014) The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering. Tissue Eng Part C Methods 20(2):149–159

    Article  PubMed  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  PubMed  Google Scholar 

  • Bugelli G, Ascione F, Dell’Osso G, Zampa V, Giannotti S (2018) Biphasic bioresorbable scaffold (TruFit(®)) in knee osteochondral defects: 3-T MRI evaluation of osteointegration in patients with a 5-year minimum follow-up. Musculoskelet Surg 102(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreira AC, Zambuzzi WF, Rossi MC, Astorino Filho R, Sogayar MC, Granjeiro JM (2015) Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine. Vitam Horm 99:293–322. https://doi.org/10.1016/bs.vh.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  • Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204

    Article  PubMed  Google Scholar 

  • Christensen BB, Olesen ML, Hede KTC (2020) Particulated cartilage for chondral and osteochondral repair: a review. Cartilage 13:1947603520904757

    Google Scholar 

  • Clark JM (1990) The organisation of collagen fibrils in the superficial zones of articular cartilage. J Anat 171:117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39(6):1170–1179

    Article  PubMed  Google Scholar 

  • Cook JL, Stoker AM, Stannard JP, Kuroki K, Cook CR, Pfeiffer FM, Bozynski C et al (2014) A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 472(11):3404–3414

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford DC, DeBerardino TM, Williams Iii RJ (2012) NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg – Ser A 94(11):979–989

    Article  Google Scholar 

  • Cugat R, Samitier G, Vinagre G, Sava M, Alentorn-Geli E, García-Balletbó M, Cuscó X (2021) Particulated autologous chondral−platelet-rich plasma matrix implantation (PACI) for treatment of full-thickness cartilage osteochondral defects. Arthrosc Tech 10(2):e539–e544. https://doi.org/10.1016/j.eats.2020.10.038

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosi R, Valli F, De Luca P, Ursino N, Usuelli FG (2019) MaioRegen osteochondral substitute for the treatment of knee defects: a systematic review of the literature. J Clin Med 8(6):783

    Article  PubMed Central  Google Scholar 

  • Dabrowski FA, Burdzinska A, Kulesza A, Sladowska A, Zolocinska A, Gala K, Paczek L et al (2017) Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res 43(11):1758–1768. https://doi.org/10.1111/jog.13432

    Article  CAS  PubMed  Google Scholar 

  • Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9(1):9–26

    Article  CAS  PubMed  Google Scholar 

  • De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, Gemmati D et al (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr Cartil 12(10):793–800

    Article  Google Scholar 

  • de Sousa EB, Aguiar DP, Barcelos JFM, Duarte MEL, Olej B (2015) Approaches to preserve human osteochondral allografts. Cell Tissue Bank 16(3):425–431

    Article  PubMed  Google Scholar 

  • Deshmukh K, Nimni ME (1973) Isolation and characterization of cyanogen bromide peptides from the collagen of bovine articular cartilage. Biochem J 133(4):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikina AD, Lai BP, Cao M, Zborowski M, Alsberg E (2017) Magnetic field application or mechanical stimulation: via magnetic microparticles does not enhance chondrogenesis in mesenchymal stem cell sheets. Biomater Sci 5(7):1241–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5(3):173–177

    Article  PubMed  Google Scholar 

  • Esposito M, Lucariello A, Costanzo C, Fiumarella A, Giannini A, Riccardi G, Riccio I (2013) Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo 27(4):495–500

    CAS  PubMed  Google Scholar 

  • Eyre DR, Wu JJ (1995) Collagen structure and cartilage matrix integrity. J Rheumatol 22:82–85

    Google Scholar 

  • Fan W, Yuan L, Li J, Wang Z, Chen J, Guo C, Mo X, Yan Z (2020) Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration. Mater Sci Eng C Mater Biol Appl 110:110705. https://doi.org/10.1016/j.msec.2020.110705

    Article  CAS  PubMed  Google Scholar 

  • Farr J, Tabet SK, Margerrison E, Cole BJ (2014) Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 42(6):1417–1425

    Article  PubMed  Google Scholar 

  • Fortier LA, Strauss EJ, McCarrel TM, Cole BJ (2011) The role of growth factors in cartilage repair. Clin Orthop Relat Res 469:2706–2715. https://doi.org/10.1007/s11999-011-1857-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisbie DD, Stewart MC (2011) Cell-based therapies for equine joint disease. Vet Clin North Am Equine Pract 27(2):335–349

    Article  PubMed  Google Scholar 

  • Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42(3):592–601

    Article  PubMed  Google Scholar 

  • Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2(6):872–883

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Lin M, Liang A, Zhang L, Chen C, Liang G, Xu C et al (2014) Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res 56(1):62–70

    Article  CAS  PubMed  Google Scholar 

  • Gharravi AM (2019) Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit. Cell Tissue Bank 20(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Gharravi AM, Orazizadeh M, Ansari-Asl K, Banoni S, Izadi S, Hashemitabar M (2012) Design and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering. Avicenna J Med Biotechnol 4(2):65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gharravi AM, Orazizadeh M, Hashemitabar M (2014) Direct expansion of chondrocytes in a dynamic three-dimensional culture system: overcoming dedifferentiation effects in monolayer culture. Artif Organs 38(12):1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Gharravi AM, Orazizadeh M, Hashemitabar M (2016) Fluid-induced low shear stress improves cartilage like tissue fabrication by encapsulating chondrocytes. Cell Tissue Bank 17(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Giannoni P, Pagano A, Maggi E, Arbicò R, Randazzo N, Grandizio M, Cancedda R et al (2005) Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthr Cartil 13(7):589–600

    Article  CAS  Google Scholar 

  • Granados-Montiel J, Cruz-Lemini M (2021) SERPINA9 and SERPINB2: novel cartilage lineage differentiation markers of human mesenchymal stem cells with kartogenin. Cartilage 12(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, Smailys A (2005) A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21(9):1066–1075

    Article  PubMed  Google Scholar 

  • Guha Thakurta S, Kraft M, Viljoen HJ, Subramanian A (2014) Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold. Acta Biomater 10(11):4798–4810

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Setton LA, Kraus VB (2000) Structure and function of articular cartilage. In: Garrett WE et al (eds) Principles and practice of orthopaedic sports medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hagmann S, Moradi B, Frank S, Dreher T, Kämmerer PW, Richter W, Gotterbarm T (2013) FGF-2 addition during expansion of human bone marrow-derived stromal cells alters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif 46(4):396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider KH (2017) Hematopoietic stem cell transplantation: the quality matters. J Stem Cell Res Ther 7:6

    Article  Google Scholar 

  • Haider KH (2018) The aging stem cells and cardiac reparability: lesson learnt from clinical studies is that old is not always gold. Regen Med 13(4):457–475

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Aramini B (2020) “Mircrining” the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 11:Article 23, 1–12

    Article  Google Scholar 

  • Haider KH, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288:2557–2567

    Article  Google Scholar 

  • Haider KH, Aslam M (2018) Cell-free therapy with stem cell secretions: protection, repair and regeneration of the injured myocardium. In: Husnain Haider Kh, Aziz S (eds) Stem cells: from hype to real hope. Medicine & Life Sciences, De Gruyter, Geithner Straße13- 10785, Berlin. (Published, 2018)

    Google Scholar 

  • Haider KH, Aziz S (2017) Paracrine hypothesis and cardiac repair. Int J Stem Cell Res Transplant 5(1):265–267

    Google Scholar 

  • Haider KH, Jiang S, Niagara MI, Ashraf M (2008) IGF-I over expressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circul Res 103:1300–1308

    Article  CAS  Google Scholar 

  • Haider KH, Lee Y-J, Jiang S, Ahmad RPH, Ahn MR, Ashraf M (2010) Phosphodiesterase inhibition with tadalafil provides longer and sustained protection of stem cells. Am J Physiol Heart Lung Physiol 299:H1395–HH404

    Article  CAS  Google Scholar 

  • Hangody L, Füles P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A(Suppl 2):25–32

    Article  Google Scholar 

  • Hardingham TE, Fosang AJ, Dudhia J (1994) The structure, function and turnover of Aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin Biochem 32(4):249–257

    CAS  PubMed  Google Scholar 

  • Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V (2019) Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother 109:2318–2326

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Zhang D, Feng X, Zhou Y (2020) Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement of β-catenin signaling pathway. Arch Oral Biol 118:104860

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Li L (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther 10(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huaman O, Bahamonde J, Cahuascanco B, Jervis M, Palomino J, Torres CG, Peralta OA (2019) Immunomodulatory and immunogenic properties of mesenchymal stem cells derived from bovine fetal bone marrow and adipose tissue. Res Vet Sci 124:212–222. https://doi.org/10.1016/j.rvsc.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  • Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Li Q, Li Y, Yao Z, Luo D, Rao P, **ao J (2018a) Cartilage tissue regeneration: the roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther 13(7):547–567. https://doi.org/10.2174/1574888X12666170608080722

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Das R, Patel A, Nguyen TD (2018b) Physical stimulations for bone and cartilage regeneration. Regen Eng Transl Med 4(4):216–237. https://doi.org/10.1007/s40883-018-0064-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Irawan V, Sung TC, Higuchi A, Ikoma T (2018) Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med 15(6):673–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaberi FM, Keshtgar S, Tavakkoli A, Pishva E, Geramizadeh B, Tanideh N, Jaberi MM (2011) A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits. Arch Med Res 42(4):268–273

    Article  PubMed  Google Scholar 

  • Jeong SA, Kim DH, Ha J, ** HJ, Kwon SJ, Chang JW, Choi SJ et al (2013) Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells 31(10):2136–2148. https://doi.org/10.1002/stem.1471

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Ha J, Lee M, ** HJ, Kim DH, Choi SJ, Oh W et al (2015) Autocrine action of Thrombospondin-2 determines the chondrogenic differentiation potential and suppresses hypertrophic maturation of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells 33(11):3291–3303

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Guo W, Tian G, Luo X, Peng L, Liu S, Sui X et al (2020) Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new Hope. Stem Cells Int 2020:5690252

    Article  PubMed  PubMed Central  Google Scholar 

  • ** HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW et al (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14(9):17986–18001. https://doi.org/10.3390/ijms140917986

    Article  PubMed  PubMed Central  Google Scholar 

  • **g H, Zhang X, Gao M, Luo K, Fu W, Yin M, Wang W et al (2019) Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β-catenin-related pathways. FASEB J 33(4):5641–5653

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, Domínguez-Oronoz R (2012) Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 40(6):1289–1295. https://doi.org/10.1177/0363546512441585

    Article  PubMed  Google Scholar 

  • Jung M, Kaszap B, Redöhl A, Steck E, Breusch S, Richter W, Gotterbarm T (2009) Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant 18(8):923–932. https://doi.org/10.3727/096368909X471297

    Article  PubMed  Google Scholar 

  • Kendrick T, Bridget Z, Karl R, Christopher M, Wasim K (2019) Synovium-derived mesenchymal stem cell transplantation in cartilage regeneration: a PRISMA review of in vivo studies. Front Bioeng Biotech 7:314. https://doi.org/10.3389/fbioe.2019.00314

    Article  Google Scholar 

  • Kim HJ, Im GI (2009) Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res 27(5):612–619. https://doi.org/10.1002/jor.20766

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Haider KH, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-107 and miR-210 expression. J Biol Chem 284:33161–33168

    Article  PubMed  Google Scholar 

  • Kim HW, Ashraf M, Jiang S, Haider KH (2012) Stem cell based delivery of hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of the infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Lee SM, Kim SH, Tatman P, Gee AO, Kim DH, Lee KE et al (2014) Effect of self-assembled peptide-mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. Int J Nanomedicine 9(Suppl 1):141–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Kino-oka M, Maeda Y, Sato Y, Maruyama N, Takezawa Y, Khoshfetrat AB, Sugawara K et al (2009) Morphological evaluation of chondrogenic potency in passaged cell populations. J Biosci Bioeng 107(5):544–551

    Article  CAS  PubMed  Google Scholar 

  • Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, Roberts S et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112

    Article  PubMed  Google Scholar 

  • Kraeutler MJ, Aliberti GM, Scillia AJ, McCarty EC, Mulcahey MK (2020) Microfracture versus drilling of articular cartilage defects: a systematic review of the basic science evidence. Orthop J Sports Med 8(8):2325967120945313

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreuz PC, Müller S, Freymann U, Erggelet C, Niemeyer P, Kaps C, Hirschmüller A (2011) Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation. Am J Sports Med 39(8):1697–1705

    Article  PubMed  Google Scholar 

  • La Rocca G, Lo Iacono M, Corsello T, Corrao S, Farina F, Anzalone R (2013) Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Curr Stem Cell Res Ther 8(1):100–113

    Article  PubMed  Google Scholar 

  • Langer F, Gross AE (1974) Immunogenicity of allograft articular cartilage. J Bone Joint Surg – Ser A 56(2):297–304

    Article  CAS  Google Scholar 

  • Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J (2020) Mesenchymal stem cells for cartilage regeneration. J Tissue Eng 11:2041731420943839. https://doi.org/10.1177/2041731420943839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KBL, Hui JHP, Im CS, Ardany L, Eng HL (2007) Injectable mesenchymal stem cell therapy for large cartilage defects – a porcine model. Stem Cells 25(11):2964–2971

    Article  PubMed  Google Scholar 

  • Li X, Wei G, Wang X, Liu DH, Deng RD, Li H, Zhou JH et al (2012) Targeting of the Sonic Hedgehog pathway by atractylenolides promotes chondrogenic differentiation of mesenchymal stem cells. Biol Pharm Bull 35(8):1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, Cao W et al (2016) In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther 7(1):1–13

    Article  Google Scholar 

  • Li L, Yuan Y, Youhai D (2017) Comparison of stemness and immunogenicity of osteo-differentiated mesenchymal stem cells derived from rabbit bone marrow and Wharton’s jelly. J Biomater Tissue Eng 7(12):1326–1335. https://doi.org/10.1166/jbt.2017.1690

    Article  Google Scholar 

  • Li L, Duan X, Fan Z, Chen L, **ng F, Xu Z, Chen Q et al (2018) Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci Rep 8(1):1

    Google Scholar 

  • Li N, Gao J, Mi L, Zhang G, Zhang L, Zhang N, Huo R et al (2020) Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res Ther 11:381. https://doi.org/10.1186/s13287-020-01885-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9(9):e107001. https://doi.org/10.1371/journal.pone.0107001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfy A, El-Sherbiny YM, Cuthbert R, Jones E, Badawy A (2019) Comparative study of biological characteristics of mesenchymal stem cells isolated from mouse bone marrow and peripheral blood. Biomed Rep 11:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Dhanaraj S, Wang Z, Bradley DM, Bowman SM, Cole BJ, Binette F (2006) Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 24(6):1261–1270

    Article  PubMed  Google Scholar 

  • Ma Q, Liao J, Cai X (2018) Different sources of stem cells and their application in cartilage tissue engineering. Curr Stem Cell Res Ther 13(7):568–575. https://doi.org/10.2174/1574888X13666180122151909

    Article  CAS  PubMed  Google Scholar 

  • Mabvuure N, Hindocha S, Khan WS (2012) The role of bioreactors in cartilage tissue engineering. Curr Stem Cell Res Ther 7(4):287–292

    Article  CAS  PubMed  Google Scholar 

  • Mankin HJ, Gebhardt MC, Tomford WW (1987) The use of frozen cadaveric allografts in the management of patients with bone tumors of the extremities. Orthop Clin N Am 18(2):275–289

    Article  CAS  Google Scholar 

  • Marino L, Castaldi MA, Rosamilio R, Ragni E, Vitolo R, Fulgione C, Castaldi SG et al (2019) Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12(2):218–226. https://doi.org/10.15283/ijsc18034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCulloch PC, Kang RW, Sobhy MH, Hayden JK, Cole BJ (2007) Prospective evaluation of prolonged fresh osteochondral allograft transplantation of the femoral condyle: minimum 2-year follow-up. Am J Sports Med 35(3):411–420

    Article  PubMed  Google Scholar 

  • McNickle AG, L’Heureux DR, Yanke AB, Cole BJ (2009) Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 37(7):1344–1350

    Article  PubMed  Google Scholar 

  • Mistry H, Metcalfe A, Smith N, Loveman E, Colquitt J, Royle P, Waugh N (2019) The cost-effectiveness of osteochondral allograft transplantation in the knee. Knee Surg Sports Traumatol Arthrosc 27(6):1739–1753. https://doi.org/10.1007/s00167-019-05392-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL et al (2006) Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):294–304

    Article  PubMed  Google Scholar 

  • Nehrer S, Dorotka R, Domayer S, Stelzeneder D, Kotz R (2009) Treatment of full-thickness chondral defects with Hyalograft C in the knee: a prospective clinical case series with 2 to 7 years’ follow-up. Am J Sports Med 37(1_Suppl):81S–87S

    Article  PubMed  Google Scholar 

  • Nejadnik H, Hui JH, Choong EPF, Tai BC, Eng HL (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116

    Article  PubMed  Google Scholar 

  • Neybecker P, Henrionnet C, Pape E, Grossin L, Mainard D, Galois L, Loeuille D et al (2020) Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Stem Cell Res Ther 11:316. https://doi.org/10.1186/s13287-020-01786-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C et al (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112(2):295–307

    Article  CAS  PubMed  Google Scholar 

  • Niethammer TR, Holzgruber M, Gülecyüz MF, Weber P, Pietschmann MF, Müller PE (2017) Matrix based autologous chondrocyte implantation in children and adolescents: a match paired analysis in a follow-up over three years post-operation. Int Orthop 41(2):343–350

    Article  PubMed  Google Scholar 

  • Nordberg RC, Mellor LF, Krause AR, Donahue HJ, Loboa EG (2019) LRP receptors in chondrocytes are modulated by simulated microgravity and cyclic hydrostatic pressure. PLoS One 14(10):e0223245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuelle CW, Nuelle JA, Cook JL, Stannard JP (2017) Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. J Knee Surg 30(2):179–184

    Article  PubMed  Google Scholar 

  • Ossendorf C, Kaps C, Kreuz PC, Burmester GR, Sittinger M, Erggelet C (2007) Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res Ther 9:1

    Article  Google Scholar 

  • Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil 13(6):527–536

    Article  CAS  Google Scholar 

  • Park MS, Kim YH, Jung Y, Kim SH, Park JC, Yoon DS, Kim SH et al (2015) In situ recruitment of human bone marrow-derived mesenchymal stem cells using chemokines for articular cartilage regeneration. Cell Transplant 24(6):1067–1083

    Article  PubMed  Google Scholar 

  • Park YB, Ha CW, Lee CH, Park YG (2017) Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: a case report with a 5-year follow-up. BMC Musculoskelet Disord 18(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Park IS, ** RL, Oh HJ, Truong MD, Choi BH, Park SH, Park DY et al (2019) Sizable scaffold-free tissue-engineered articular cartilage construct for cartilage defect repair. Artif Organs 43(3):278–287

    Article  CAS  PubMed  Google Scholar 

  • Patel JM, Saleh KS, Burdick JA, Mauck RL (2019) Bioactive factors for cartilage repair and regeneration: improving delivery, retention, and activity. Acta Biomater 93:222–238. https://doi.org/10.1016/j.actbio.2019.01.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  Google Scholar 

  • Peterson L, Brittberg M, Kiviranta I, Åkerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sports Med 30(1):2–12

    Article  PubMed  Google Scholar 

  • Pigeot S, Bourgine PE, Claude J, Scotti C, Papadimitropoulos A, Todorov A, Epple C et al (2020) Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage. Int J Mol Sci 21(19):1–14

    Article  Google Scholar 

  • Polat G, Erşen A, Erdil ME, Kızılkurt T, Kılıçoğlu Ö, Aşık M (2016) Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc 24(4):1299–1303

    Article  PubMed  Google Scholar 

  • Pot MW, van Kuppevelt TH, Gonzales VK, Buma P, IntHout J, de Vries RBM, Daamen WF (2017) Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ 5:e3927. https://doi.org/10.7717/peerj.3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauh J, Milan F, Günther KP, Stiehler M (2011) Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev 17(4):263–280

    Article  CAS  PubMed  Google Scholar 

  • Riboh JC, Cole BJ, Farr J (2015) Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med 8(4):429–435. https://doi.org/10.1007/s12178-015-9300-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers BA, David LA, Briggs TWR (2010) Sequential outcome following autologous chondrocyte implantation of the knee: a six-year follow-up. Int Orthop 34(7):959–964

    Article  PubMed  Google Scholar 

  • Scarfì S (2016) Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells 8(1):1–12. https://doi.org/10.4252/wjsc.v8.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I et al (2011) A prospective multicenter study on the outcome of type i collagen hydrogel-based autologous chondrocyte implantation (cares) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565

    Article  PubMed  Google Scholar 

  • Schüttler KF, Götschenberg A, Klasan A, Stein T, Pehl A, Roessler PP, Figiel J et al (2019) Cell-free cartilage repair in large defects of the knee: increased failure rate 5 years after implantation of a collagen type I scaffold. Arch Orthop Trauma Surg 139(1):99–106. https://doi.org/10.1007/s00402-018-3028-4

    Article  PubMed  Google Scholar 

  • Sharifi N, Gharravi AM (2019) Shear bioreactors stimulating chondrocyte regeneration, a systematic review. Inflamm Regen 39:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman SL, Thyssen E, Nuelle CW (2017) Osteochondral autologous transplantation. Clin Sports Med 36(3):489–500

    Article  PubMed  Google Scholar 

  • Shimozono Y, Hurley ET, Myerson CL, Kennedy JG (2018) Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 26(10):3055–3062

    Article  PubMed  Google Scholar 

  • Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T (2006) In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 97(1):84–97

    Article  CAS  PubMed  Google Scholar 

  • Silva Couto P, Rotondi MC, Bersenev A, Hewitt CJ, Nienow AW, Verter F, Rafiq QA (2020) Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 45, 107636. https://doi.org/10.1016/j.biotechadv.2020.107636

  • Simona C, Paola P, Eleni A, Claudio N, Cinzia M (2020) Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front Cell Dev Biol 8:236. https://doi.org/10.3389/fcell.2020.00236

    Article  Google Scholar 

  • Steinwachs M, Kreuz PC (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 23(4):381–387

    Article  PubMed  Google Scholar 

  • Subramanian A, Turner JA, Budhiraja G, Thakurta SG, Whitney NP, Nudurupati SS (2013) Ultrasonic bioreactor as a platform for studying cellular response. Tissue Eng Part C Methods 19(3):244–255

    Article  CAS  PubMed  Google Scholar 

  • Taipaleenmäki H, Suomi S, Hentunen T, Laitala-Leinonen T, Säämänen AM (2008) Impact of stromal cell composition on BMP-induced chondrogenic differentiation of mouse bone marrow derived mesenchymal cells. Exp Cell Res 314(13):2400–2410

    Article  PubMed  Google Scholar 

  • Taşkiran E, Ozçelik C (2007) Autologous osteochondral transplantation. Acta Orthop Traumatol Turc 41(Suppl 2):70–78

    PubMed  Google Scholar 

  • Teunissen M, Verseijden F, Riemers FM, van Osch GJVM, Tryfonidou MA (2021) The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6. Vet J 269:105605. https://doi.org/10.1016/j.tvjl.2020.105605

    Article  CAS  PubMed  Google Scholar 

  • Theodoridis K, Aggelidou E, Manthou M, Demiri E, Bakopoulou A, Kritis A (2019a) Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: evaluation of growth media in static and in perfusion bioreactor dynamic culture. Colloids Surf B: Biointerfaces 183:110403. https://doi.org/10.1016/j.colsurfb.2019.110403

  • Theodoridis K, Aggelidou E, Vavilis T, Manthou ME, Tsimponis A, Demiri EC, Boukla A et al (2019b) Hyaline cartilage next generation implants from adipose-tissue-derived mesenchymal stem cells: comparative study on 3D-printed polycaprolactone scaffold patterns. J Tissue Eng Regen Med 13(2):342–355

    Article  CAS  PubMed  Google Scholar 

  • Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Gwathmey FW, Milewski MD et al (2013) Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy 29(10):1661–1670

    Article  PubMed  Google Scholar 

  • Tsai MC, Hung KC, Hung SC, Hsu SH (2015) Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf B Biointerfaces 125:34–44

    Article  CAS  PubMed  Google Scholar 

  • Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278(42):41227–41236

    Article  CAS  PubMed  Google Scholar 

  • Turajane T, Chaweewannakorn U, Larbpaiboonpong V, Aojanepong J, Thitiset T, Honsawek S, Fongsarun J et al (2013) Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thail 96(5):580–588

    Google Scholar 

  • Valiani A, Izadi MA, Bahramian H, Esfandiari E, Hashemibeni B (2017) Comparison between the effect of kartogenin and TGFβ3 on chondrogenesis of human adipose- derived stem cells in fibrin scaffold. Bratisl Lek Listy 118(10):591–597

    CAS  PubMed  Google Scholar 

  • Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Vogt S, Siebenlist S, Hensler D, Weigelt L, Ansah P, Woertler K, Imhoff AB (2011) Osteochondral transplantation in the elbow leads to good clinical and radiologic long-term results: an 8- to 14-year follow-up examination. Am J Sports Med 39(12):2619–2625. https://doi.org/10.1177/0363546511420127

    Article  PubMed  Google Scholar 

  • Voisin C, Cauchois G, Reppel L, Laroye C, Louarn L, Schenowitz C, Sonon P et al (2020) Are the immune properties of mesenchymal stem cells from Wharton’s jelly maintained during chondrogenic differentiation? J Clin Med 9(2):423. https://doi.org/10.3390/jcm9020423

    Article  CAS  PubMed Central  Google Scholar 

  • Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79

    Article  PubMed  Google Scholar 

  • Wasyłeczko M, Sikorska W, Chwojnowski A (2020) Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 10(11):348. https://doi.org/10.3390/membranes10110348

    Article  CAS  PubMed Central  Google Scholar 

  • Wei W, Dai H (2021) Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater 6(12):4830–4855. https://doi.org/10.1016/j.bioactmat.2021.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, Lin J et al (2021) Advanced hydrogels for the repair of cartilage defects and regeneration. Bioactive Mater 6(4):998–1011. https://doi.org/10.1016/j.bioactmat.2020.09.030

    Article  CAS  Google Scholar 

  • Weigelt L, Siebenlist S, Hensler D, Imhoff AB, Vogt S (2015) Treatment of osteochondral lesions in the elbow: results after autologous osteochondral transplantation. Arch Orthop Trauma Surg 135(5):627–634. https://doi.org/10.1007/s00402-015-2204-z

    Article  CAS  PubMed  Google Scholar 

  • Whitney NP, Lamb AC, Louw TM, Subramanian A (2012) Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol 38(10):1734–1743

    Article  PubMed  PubMed Central  Google Scholar 

  • Wixted CM, Dekker TJ, Adams SB (2020) Particulated juvenile articular cartilage allograft transplantation for osteochondral lesions of the knee and ankle. Expert Rev Med Devices 17(3):235–244. https://doi.org/10.1080/17434440.2020.1733973

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Billinghurst RC, Pidox I, Antoniou J, Zukor D, Tanzer M, Poole AR (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 46(8):2087–2094

    Article  CAS  PubMed  Google Scholar 

  • **a Z, Hu DA, Di W, Fang H, Hao W, Linjuan H, Deyao S et al (2021) Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering. Front Bioeng Biotech 9:141. https://doi.org/10.3389/fbioe.2021.603444

    Article  Google Scholar 

  • **e Y, Liu X, Wang S, Wang M, Wang G (2019) Proper mechanical stimulation improve the chondrogenic differentiation of mesenchymal stem cells: improve the viscoelasticity and chondrogenic phenotype. Biomed Pharmacother 115:108935

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Wu M, Feng J, Lin X, Gu Z (2012) RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int J Mol Med 30(5):1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Yamashita F, Sakakida K, Suzu F, Takai S (1985) The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res 201:43–50

    Article  Google Scholar 

  • Yamashita A, Morioka M, Yahara Y, Okada M, Kobayashi T, Kuriyama S, Matsuda S et al (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep 4(3):404–418

    Article  CAS  Google Scholar 

  • Yang Z, Huang CY, Candiotti KA, Zeng X, Yuan T, Li J, Yu H et al (2011) Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte-like phenotype in vitro. J Orthop Res 29(8):1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Wang J, Gu Z, Feng W, Gao M, Wu Y, Zheng H, He X, Mo X (2017) Evaluation of the potential of kartogenin encapsulated poly(l-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. J Biomater Appl 32(3):331–341. https://doi.org/10.1177/0885328217717077

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Sekiya I, Miyazaki K, Ichinose S, Hata Y, Muneta T (2005) In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res 322(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A 18(19–20):1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Wen F, Wu Y, Goh GS, Ge Z, Tan LP, Hui JH et al (2015) Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials 38:72–85

    Article  PubMed  Google Scholar 

  • Zhang Y, Hao C, Guo W, Peng X, Wang M, Yang Z, Li X et al (2020) Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Res Ther 11(1):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Meng F, Zhang Q, Zou Z, **ao K, Zhu T, Li H et al (2021) Allogeneic adipose-derived mesenchymal stem cells promote the expression of chondrocyte redifferentiation markers and retard the progression of knee osteoarthritis in rabbits. Am J Transl Res 13(2):632–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Teng B, Sun X, Dong Y, Wang S, Hu Y, Wang Z, Ma X, Yang Q (2020) Synergistic effects of Kartogenin and transforming growth factor-β3 on chondrogenesis of human umbilical cord mesenchymal stem cells in vitro. Orthop Surg 12(3):938–945. https://doi.org/10.1111/os.12691

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Ju L, Jiang B, Chen L, Dong Z, Jiang L, Wang R, Lou Y (2013) Chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells by co-culture with rabbit chondrocytes. Mol Med Rep 8:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Song K, Jiang S, Chen J, Tang L, Li S, Fan J et al (2017) Numerical simulation of mass transfer and three-dimensional fabrication of tissue-engineered cartilages based on chitosan/gelatin hybrid hydrogel scaffold in a rotating bioreactor. Appl Biochem Biotechnol 181(1):250–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gharravi, A.M., Gholami, M.R., Azandeh, S., Haider, K.H. (2022). Stem Cell for Cartilage Repair. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation