Log in

Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of infarcted heart function

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

This study seeks to test our hypothesis that transgenic induction of miR-210 in mesenchymal stem cells (MSC) simulates the pro-survival effects of ischemic preconditioning (IPC) and that engraftment of PCMSC helps in the functional recovery of ischemic heart by miR-210 transfer to host cardiomyocytes through gap junctions. miR-210 expression in MSC was achieved by IPC or nanoparticle-based transfection of miR-210 plasmid (miRMSC) and functional recovery of the infarcted heart of rat transplanted with PCMSC or miRMSC was evaluated. Both PCMSC and miRMSC showed higher survival under lethal anoxia as compared to non-PCMSC and scramble-transfected MSC (ScMSC) controls with concomitantly lower CASP8AP2 expression. Similarly, both PCMSC and miRMSC survived better and accelerated functional recovery of ischemic heart post-transplantation. To validate our hypothesis that MSC deliver miR-210 to host cardiomyocytes, in vitro co-culture between cardiomyocytes and PCMSC or miRMSC (using non-PCMSC or ScMSC as controls) showed co-localization of miR-210 with gap-junctional connexin-43. miR-210 transfer to cardiomyocytes was blocked by heptanol pretreatment. Moreover, higher survival of cardiomyocytes co-cultured with PCMSC was observed with concomitant expression of CASP8AP2 as compared to cardiomyocytes co-cultured with non-PCMSC thus suggesting that miR-210 was translocated from MSC to protect host cardiomyocytes. Induction of miR-210 in MSC promoted their survival post-engraftment in the infarcted heart. Moreover, direct transfer of pro-survival miR-210 from miRMSC to host cardiomyocytes led to functional recovery of the ischemic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  2. Rane S, Sayed D, Abdellatif M (2007) MicroRNA with a MacroFunction. Cell Cycle 6:1850–1855

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E, Yu A (2000) Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 475:123–130

    Article  PubMed  CAS  Google Scholar 

  4. Ivan M, Harris AL, Martelli F, Kulshreshtha R (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12:1426–1431

    Article  PubMed  CAS  Google Scholar 

  5. Haider KH, Kim HW, Ashraf M (2009) Hypoxia-inducible factor-1alpha in stem cell preconditioning: mechanistic role of hypoxia-related micro-RNAs. J Thorac Cardiovasc Surg 138:257

    Article  PubMed  Google Scholar 

  6. Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, Ivan M (2007) Regulation of microRNA expression: the hypoxic component. Cell Cycle 6:1426–1431

    Article  PubMed  CAS  Google Scholar 

  7. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    Article  PubMed  CAS  Google Scholar 

  8. Mathew LK, Simon MC (2009) mir-210: a sensor for hypoxic stress during tumorigenesis. Mol Cell 35:737–738

    Article  PubMed  CAS  Google Scholar 

  9. Huang X, Le QT, Giaccia AJ (2010) MiR-210—micromanager of the hypoxia pathway. Trends Mol Med 16:230–237

    Article  PubMed  CAS  Google Scholar 

  10. Lu G, Haider HK, Jiang S, Ashraf M (2009) Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 119:2587–2596

    Article  PubMed  Google Scholar 

  11. Suzuki Y, Kim HW, Ashraf M, Haider H (2011) Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 299:H1077–H1082

    Article  Google Scholar 

  12. Lu G, Jiang S., Ashraf, M., Haider, KH (2012) Sub-cellular preconditioning of stem cells: mitochondrial targeting of connexin-43 transgene is cytoprotective and involves shift of balance between mitochondrial Bak and Bcl-xL. Regen Med 7(3):323–334

    Google Scholar 

  13. Haider H, Ashraf M (2010) Preconditioning and stem cell survival. J Cardiovasc Transl Res 3:89–102

    Article  PubMed  Google Scholar 

  14. Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284:33161–33168

    Article  PubMed  Google Scholar 

  15. Haider KH, Idris NM, Kim HW, Ahmed RP, Shujia J, Ashraf M (2010) MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res 88:168–178

    Article  PubMed  CAS  Google Scholar 

  16. Ye L, Haider H, Tan R, Toh W, Law PK, Tan W, Su L, Zhang W, Ge R, Zhang Y et al (2007) Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation 116:I113–I120

    Article  PubMed  CAS  Google Scholar 

  17. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  PubMed  CAS  Google Scholar 

  18. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ (2009) Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200(661):e1–e7

    PubMed  Google Scholar 

  19. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    Article  PubMed  CAS  Google Scholar 

  20. Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O’Brien-Jenkins A, Katsaros D, Weber BL et al (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7:255–264

    Article  PubMed  CAS  Google Scholar 

  21. Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S (2008) Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 582:2397–2401

    Article  PubMed  CAS  Google Scholar 

  22. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229

    Article  PubMed  CAS  Google Scholar 

  23. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:S124–S131

    Article  PubMed  CAS  Google Scholar 

  24. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  PubMed  CAS  Google Scholar 

  25. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS et al (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568:459–468

    Article  PubMed  CAS  Google Scholar 

  26. Kizana E, Cingolani E, Marban E (2009) Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther 16:1163–1168

    Article  PubMed  CAS  Google Scholar 

  27. Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogorek B, Ferreira-Martins J, Arranto C, D’Amario D, Del Monte F et al (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123:1287–1296

    Article  PubMed  CAS  Google Scholar 

  28. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microrna from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    Article  PubMed  CAS  Google Scholar 

  29. Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, Matera AG, Melino G, De Laurenzi V (2006) FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA 103:14808–14812

    Article  PubMed  CAS  Google Scholar 

  30. Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J 26:391–401

    Article  PubMed  CAS  Google Scholar 

  31. Kim HW, Mallick F, Durrani S, Ashraf M, Jiang S, Haider KH (2012) Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal. doi:10.1089/ars.2012.4518

Download references

Acknowledgments

This work was supported by NIH Grants# [R37 HL074272; HL-087246(M.A) and HL-087288; HL-089535; HL106190-01(Kh.H.H)].

Disclosure statement

Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawaja Husnain Haider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.W., Jiang, S., Ashraf, M. et al. Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of infarcted heart function. J Mol Med 90, 997–1010 (2012). https://doi.org/10.1007/s00109-012-0920-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0920-1

Keywords

Navigation