Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis

  • Chapter
  • First Online:
Multifaceted Biomedical Applications of Graphene

Abstract

With the emerging trends and recent advances in nanotechnology, it has become increasingly possible to overcome current hurdles for bone and cartilage regeneration. Among the wide type of nanomaterials, graphene (G) and its derivatives (graphene-based materials, GBMs) have been highlighted due to the specific physicochemical and biological properties. In this review, we present the recent development of GBM-based scaffolds for bone and cartilage engineering, focusing on the formulation/shape/size-dependent characteristics, types of scaffold and modification, biocompatibility, bioactivity and underlying mechanism, drawback and prospect of each study. From the findings described herein, mechanical property, biocompatibility, osteogenic and chondrogenic property of GBM-based scaffolds could be significantly enhanced through various scaffold fabrication methods and conjugation with polymers/nanomaterials/drugs. In conclusion, the results presented in this review support the promising prospect of using GBM-based scaffolds for improved bone and cartilage tissue engineering. Although GBM-based scaffolds have some limitations to be overcome by future research, we expect further developments to provide innovative results and improve their clinical potential for bone and cartilage regeneration.

Moon Sung Kang and Hee Jeong Jang equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aidun A, Safaei Firoozabady A, Moharrami M, Ahmadi A, Haghighipour N, Bonakdar S, Faghihi S (2019) Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: enhanced osteogenic properties for bone tissue engineering. Artif Organs 43(10):E264–E281

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025

    Article  CAS  PubMed  Google Scholar 

  • Arnold AM, Holt BD, Daneshmandi L, Laurencin CT, Sydlik SA (2019) Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. PNAS 116(11):4855–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askari E, Rasouli M, Darghiasi SF, Naghib SM, Zare Y, Rhee KY (2021) Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering. Bio-Des Manuf 4(2):243–257

    Article  CAS  Google Scholar 

  • Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A 100(12):3267–3275

    Article  PubMed  Google Scholar 

  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25(16):2258–2268

    Article  CAS  PubMed  Google Scholar 

  • Boga JC, Miguel SP, de Melo-Diogo D, Mendonça AG, Louro RO, Correia IJ (2018) In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloid Surf B 165:207–218

    Article  CAS  Google Scholar 

  • Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Lu C, Wang Q, Li F (2017a) Biocompatibility and fabrication of RGO/chitosan film for cartilage tissue recovery. Environ Toxicol Pharmacol 54:199–203

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Zhang F, Wang Q, Wu X (2017b) Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater Sci Eng C 79:697–701

    Article  CAS  Google Scholar 

  • Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425

    Article  CAS  PubMed  Google Scholar 

  • Chng ELK, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chem Eur J 19(25):8227–8235

    Article  CAS  PubMed  Google Scholar 

  • Choe G, Oh S, Seok JM, Park SA, Lee JY (2019) Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale 11(48):23275–23285

    Article  CAS  PubMed  Google Scholar 

  • Dalgic AD, Alshemary AZ, Tezcaner A, Keskin D, Evis Z (2018) Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl 32(10):1392–1405

    Article  CAS  PubMed  Google Scholar 

  • Deliormanlı AM (2019) Direct write assembly of graphene/poly (ε-caprolactone) composite scaffolds and evaluation of their biological performance using mouse bone marrow mesenchymal stem cells. Appl Biochem Biotechnol 188(4):1117–1133

    Article  PubMed  Google Scholar 

  • Deliormanlı AM, Atmaca H (2018) Biological response of osteoblastic and chondrogenic cells to graphene-containing PCL/bioactive glass bilayered scaffolds for osteochondral tissue engineering applications. Appl Biochem Biotechnol 186(4):972–989

    Article  PubMed  Google Scholar 

  • Dickson K, Katzman S, Paiement G (1995) The importance of the blood supply in the healing of tibial fractures. Contemp Orthop 30(6):489–493

    CAS  PubMed  Google Scholar 

  • Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW, Guilak F (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. PNAS 109(47):19172–19177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9(1):1–10

    Article  Google Scholar 

  • Dinescu S, Ionita M, Ignat S-R, Costache M, Hermenean A (2019) Graphene oxide enhances chitosan-based 3D scaffold properties for bone tissue engineering. Int J Mol Sci 20(20):5077–5097

    Article  CAS  PubMed Central  Google Scholar 

  • Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11(12):5201–5207

    Article  PubMed  PubMed Central  Google Scholar 

  • Evlashin S, Dyakonov P, Tarkhov M, Dagesyan S, Rodionov S, Shpichka A, Kostenko M, Konev S, Sergeichev I, Timashev P (2019) Flexible polycaprolactone and polycaprolactone/graphene scaffolds for tissue engineering. Materials 12(18):2991

    Article  CAS  PubMed Central  Google Scholar 

  • Farshid B, Lalwani G, Mohammadi MS, Sankaran JS, Patel S, Judex S, Simonsen J, Sitharaman B (2019) Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. J Biomed Mater Res A 107(6):1143–1153

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Sun J, Liu G, Wu S, **ang Z (2021) Graphene oxide–modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. Mat Sci Eng C 119:111603–111617

    Article  CAS  Google Scholar 

  • Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41(3-4):389–399

    CAS  PubMed  Google Scholar 

  • Guo L, Huang M, Zhang X (2003) Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method. J Mater Sci Mater Med 14(9):817–822

    Article  CAS  PubMed  Google Scholar 

  • Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42(6):556–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes B, Fang X, Zarate A, Keidar M, Zhang LG (2016) Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon 97:1–13

    Article  Google Scholar 

  • Hu X, Man Y, Li W, Li L, Xu J, Parungao R, Wang Y, Zheng S, Nie Y, Liu T (2019) 3D Bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers 11(10):1601

    Article  CAS  PubMed Central  Google Scholar 

  • Jaidev L, Kumar S, Chatterjee K (2017) Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloid Surf B 159:293–302

    Article  CAS  Google Scholar 

  • Jiang X, Zhang Y, Fan X, Deng X, Zhu Y, Li F (2016) The effects of hypoxia-inducible factor (HIF)-1α protein on bone regeneration during distraction osteogenesis: an animal study. Int J Oral Maxillofac Surg 45(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • ** L, Lee JH, ** OS, Shin YC, Kim MJ, Hong SW, Lee MH, Park J-C, Han D-W (2015) Stimulated osteogenic differentiation of human mesenchymal stem cells by reduced graphene oxide. J Nanosci Nanotechnol 15(10):7966–7970

    Article  CAS  PubMed  Google Scholar 

  • Kalita SJ, Bhardwaj A, Bhatt HA (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27(3):441–449

    Article  CAS  Google Scholar 

  • Khorshidi S, Karkhaneh A (2018) Hydrogel/fiber conductive scaffold for bone tissue engineering. J Biomed Mater Res A 106(3):718–724

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim Y-R, Kim Y, Lim KT, Seonwoo H, Park S, Cho S-P, Hong BH, Choung P-H, Chung TD (2013) Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J Mater Chem B 1(7):933–938

    Article  CAS  PubMed  Google Scholar 

  • Ko C-S, Huang J-P, Huang C-W, Chu I-M (2009) Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J Biosci Bioeng 107(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR (2018) Graphene oxide—a tool for the preparation of chemically crosslinking free alginate–chitosan–collagen scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 10(15):12441–12452

    Article  CAS  PubMed  Google Scholar 

  • Kuo CK, Li W-J, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18(1):64–73

    Article  PubMed  Google Scholar 

  • Lee JH, Shin YC, Lee S-M, ** OS, Kang SH, Hong SW, Jeong C-M, Huh JB, Han D-W (2015a) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5(1):1–13

    Article  Google Scholar 

  • Lee WC, Lim CH, Su C, Loh KP, Lim CT (2015b) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969

    Article  CAS  PubMed  Google Scholar 

  • Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH (2004) Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 68(1):28–33

    Article  PubMed  Google Scholar 

  • Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005a) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, **ao D, Zhang M (2005b) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu X, Crook JM, Wallace GG (2017) Development of a porous 3D graphene-PDMS scaffold for improved osseointegration. Colloids Surf B Biointerfaces 159:386–393

    Article  CAS  PubMed  Google Scholar 

  • Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Qu Y, Chu B, Zhang X, Qian Z (2015) Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 5:9879–9894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19(11):3564–3599

    Article  PubMed Central  Google Scholar 

  • Ligorio C, Zhou M, Wychowaniec JK, Zhu X, Bartlam C, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A (2019) Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater 92:92–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Cui L, Chen G, Huang J, Yang Y, Zou K, Lai Y, Wang X, Zou L, Wu T (2019) PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials 196:109–121

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen W, Zhao Z, Xu HH (2013) Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 34(32):7862–7872

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Shen H, Song S, Chen W, Zhang Z (2017) Accelerated biomineralization of graphene oxide–incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf B Biointerfaces 159:251–258

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhou C, Mou S, Li J, Zhou M, Zeng Y, Luo C, Sun J, Wang Z, Xu W (2019) Biocompatible graphene oxide–collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater Sci Eng C 105:110137–110147

    Article  CAS  Google Scholar 

  • Mistry AS, Mikos AG (2005) Tissue engineering strategies for bone regeneration. In: Regenerative medicine II. Springer, pp 1–22

    Google Scholar 

  • Nalvuran H, Elçin AE, Elçin YM (2018) Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. Int J Biol Macromol 114:77–84

    Article  CAS  PubMed  Google Scholar 

  • Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H (2020) Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl Mater Interfaces 12(4):4343–4357

    Article  CAS  PubMed  Google Scholar 

  • Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 13(1):57–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Feng P, Wu P, Huang W, Yang Y, Guo W, Gao C, Shuai C (2017) Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci Rep 7:46604–46617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  • Prakash J, Prema D, Venkataprasanna K, Balagangadharan K, Selvamurugan N, Venkatasubbu GD (2020) Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int J Biol Macromol 154(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Qiao P, Wang J, **e Q, Li F, Dong L, Xu T (2013) Injectable calcium phosphate–alginate–chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C 33(8):4633–4639

    Article  CAS  Google Scholar 

  • Rezaei H, Shahrezaee M, Monfared MJ, Karkan SF, Ghafelehbash R (2021) Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications. J Polym Eng 41(5):375–386

    Article  Google Scholar 

  • Rivas M, Del Valle LJ, Alemán C, Puiggalí J (2019) Peptide self-assembly into hydrogels for biomedical applications related to hydroxyapatite. Gels 5(1):14–42

    Article  CAS  PubMed Central  Google Scholar 

  • Ruan J, Wang X, Yu Z, Wang Z, **e Q, Zhang D, Huang Y, Zhou H, Bi X, **ao C (2016) Enhanced physiochemical and mechanical performance of chitosan-grafted graphene oxide for superior osteoinductivity. Adv Funct Mater 26(7):1085–1097

    Article  CAS  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  CAS  PubMed  Google Scholar 

  • Saravanan S, Chawla A, Vairamani M, Sastry T, Subramanian K, Selvamurugan N (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104:1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Satapathy MK, Manga YB, Ostrikov KK, Chiang W-H, Pandey A, Nyambat B, Chuang E-Y, Chen C-H (2019) Microplasma cross-linked graphene oxide-gelatin hydrogel for cartilage reconstructive surgery. ACS Appl Mater Interfaces 12(1):86–95

    Article  PubMed  Google Scholar 

  • Shamekhi MA, Mirzadeh H, Mahdavi H, Rabiee A, Mohebbi-Kalhori D, Eslaminejad MB (2019) Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int J Biol Macromol 127:396–405

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Lin H, Sun AX, Song S, Zhang Z, Dai J, Tuan RS (2018) Chondroinductive factor-free chondrogenic differentiation of human mesenchymal stem cells in graphene oxide-incorporated hydrogels. J Mater Chem B 6(6):908–917

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Lin H, Sun AX, Song S, Wang B, Yang Y, Dai J, Tuan RS (2020) Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Acta Biomater 105:44–55

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Yoshimoto H, Vacanti JP (2004) In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10(1-2):33–41

    Article  CAS  PubMed  Google Scholar 

  • Shin YC, Lee JH, ** L, Kim MJ, Kim Y-J, Hyun JK, Jung T-G, Hong SW, Han D-W (2015a) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol 13(1):21–31

    Article  Google Scholar 

  • Shin YC, Lee JH, ** OS, Kang SH, Hong SW, Kim B, Park J-C, Han D-W (2015b) Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts. Carbon 95:1051–1060

    Article  CAS  Google Scholar 

  • Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Wan K (2016) Reduced graphene oxide-gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27):3677–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YC, Song S-J, Jeong SJ, Kim B, Kwon IK, Hong SW, Oh J-W, Han D-W (2018) Graphene-based nanocomposites as promising options for hard tissue regeneration. In: Cutting-edge enabling technologies for regenerative medicine. Springer, New York, pp 103–117

    Chapter  Google Scholar 

  • Suh J-KF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Syama S, Mohanan P (2016) Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int J Biol Macromol 86:546–555

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Parisi C, Di Silvio L, Dini D, Forte AE (2017) Cryogenic 3D printing of super soft hydrogels. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Tang X, Zhang Q, Shi S, Yen Y, Li X, Zhang Y, Zhou K, Le AD (2010) Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1α/VEGF signaling pathways in human breast cancer cells. Int J Cancer 126(1):90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Chen W, Weir MD, Thein-Han W, Xu HH (2012) Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 8(9):3436–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira S, Rodriguez M, Pena P, De Aza A, De Aza S, Ferraz M, Monteiro F (2009) Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng C 29(5):1510–1514

    Article  CAS  Google Scholar 

  • Tetteh G, Khan A, Delaine-Smith R, Reilly G, Rehman I (2014) Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lee EH, Cao T (2011) Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev Rep 7(3):544–559

    Article  PubMed  Google Scholar 

  • Turk M, Deliormanlı AM (2017) Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. J Biomater Appl 32(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Blasioli DJ, Kim H-J, Kim HS, Kaplan DL (2006) Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27(25):4434–4442

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chu Y, He J, Shao W, Zhou Y, Qi K, Wang L, Cui S (2017) A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering. Mater Sci Eng C 80:232–242

    Article  CAS  Google Scholar 

  • Wang W, Junior JRP, Nalesso PRL, Musson D, Cornish J, Mendonça F, Caetano GF, Bártolo P (2019a) Engineered 3D printed poly (É›-caprolactone)/graphene scaffolds for bone tissue engineering. Mater Sci Eng C 100:759–770

    Article  CAS  Google Scholar 

  • Wang W, Liu Y, Yang C, Qi X, Li S, Liu C, Li X (2019b) Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci 15(10):2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Liu Y, Yang C, Jia W, Qi X, Liu C, Li X (2020) Delivery of salvianolic acid B for efficient osteogenesis and angiogenesis from silk fibroin combined with graphene oxide. ACS Biomater Sci Eng 6(6):3539–3549

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X (2019) Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int J Nanomed 14:733–751

    Article  CAS  Google Scholar 

  • **e X, Hu K, Fang D, Shang L, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7(17):7992–8002

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013a) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11):2787–2795

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Li Y, Tan X, Peng R, Liu Z (2013b) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9(9-10):1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Yaylaci SU, Sen M, Bulut O, Arslan E, Guler MO, Tekinay AB (2016) Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers. ACS Biomater Sci Eng 2(5):871–878

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Bao R-Y, Shi X-J, Yang W, Yang M-B (2017) Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr Polym 155:507–515

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chang Q, Xu L, Li G, Yang G, Ding X, Wang X, Cui D, Jiang X (2016) Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of Hif-1α. Adv Healthc Mater 5(11):1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang C, Fu L, Ye S, Wang M, Zhou Y (2019) Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules 24(9):1669–1688

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, Shu Y, Zhu Y, Duan C, Bishop E (2018) Thermoresponsive citrate-based graphene oxide scaffold enhances bone regeneration from BMP9-stimulated adipose-derived mesenchymal stem cells. ACS Biomater Sci Eng 4(8):2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Li G, Lin S, Tian T, Ma Q, Zhang Q, Shi S, Xue C, Ma W, Cai X (2017a) Electrospun poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats. ACS Appl Mater Interfaces 9(49):42589–42600

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Nowicki M, Cui H, Zhu W, Fang X, Miao S, Lee S-J, Keidar M, Zhang LG (2017b) 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116:615–624

    Article  CAS  Google Scholar 

  • Zhou C, Liu S, Li J, Guo K, Yuan Q, Zhong A, Yang J, Wang J, Sun J, Wang Z (2018) Collagen functionalized with graphene oxide enhanced biomimetic mineralization and in situ bone defect repair. ACS Appl Mater Interfaces 10(50):44080–44091

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Yu P, Shi X, Ling T, Zeng W, Chen A, Yang W, Zhou Z (2019a) Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13(8):9595–9606

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Lozano N, Wychowaniec JK, Hodgkinson T, Richardson SM, Kostarelos K, Hoyland JA (2019b) Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater 96:271–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science (NRF-2021R1A2C2006013) and by Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (No. 20014399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, M.S. et al. (2022). Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis. In: Han, DW., Hong, S.W. (eds) Multifaceted Biomedical Applications of Graphene. Advances in Experimental Medicine and Biology, vol 1351. Springer, Singapore. https://doi.org/10.1007/978-981-16-4923-3_4

Download citation

Publish with us

Policies and ethics

Navigation