Bacterial Multidrug Tolerance and Persisters: Understanding the Mechanisms, Clinical Implications, and Treatment Strategies

  • Chapter
  • First Online:
Antimicrobial Resistance

Abstract

Antibiotic resistance is a massive problem in today’s world and a serious threat to human civilization. Apart from being genetically resistant to antibiotics, the other important mechanism by which pathogenic bacteria can evade antibiotics is multidrug tolerance through the formation of persisters. In contrast to antibiotic-resistant bacteria, persister cells require no heritable genetic changes for surviving antibiotic treatment but become drug tolerant due to transient growth arrest. Since most antibiotics only target active metabolic pathways in the growing cells, non-growing persisters can escape the bactericidal effects of antibiotics and resume growth once the antibiotic is withdrawn resulting in treatment failure. Here in this book chapter, we try to highlight different aspects of persisters starting from unique characteristics of persisters, mechanisms of persister formation, clinical relevance, different techniques to study persisters, and some promising treatment options. Finally, we emphasize how focused research in this particular field can have a big impact to eradicate antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams KN et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison KR, Brynildsen MP, Collins JJ (2011a) Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison KR, Brynildsen MP, Collins JJ (2011b) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Seraih A et al (2017) Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management. Antonie Van Leeuwenhoek 110:205–219

    Article  CAS  PubMed  Google Scholar 

  • Amato SM, Orman MA, Brynildsen MP (2013) Metabolic control of persister formation in Escherichia coli. Mol Cell 50:475–487

    Article  CAS  PubMed  Google Scholar 

  • Amison RT et al (2020) The small quinolone derived compound HT61 enhances the effect of tobramycin against Pseudomonas aeruginosa in vitro and in vivo. Pulm Pharmacol Ther 61:101884

    Article  CAS  PubMed  Google Scholar 

  • Arnion H et al (2017) Mechanistic insights into type I toxin antitoxin systems in Helicobacter pylori: the importance of mRNA folding in controlling toxin expression. Nucleic Acids Res 45:4782–4795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ et al (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak Z, Gallant J, Lindsley D, Kwieciszewki B, Heidel D (1996) Enhanced ribosome frameshifting in stationary phase cells. J Mol Biol 263:140–148

    Article  CAS  PubMed  Google Scholar 

  • Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 8:e84220

    Article  PubMed  PubMed Central  Google Scholar 

  • Battesti A, Bouveret E (2006) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:1048–1063

    Article  CAS  PubMed  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  CAS  PubMed  Google Scholar 

  • Berghoff BA, Hoekzema M, Aulbach L, Wagner EG (2017) Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol Microbiol 103:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Bigger J (1944) Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. The Lancet 244:497–500

    Article  Google Scholar 

  • Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S (2008) Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 68:298–313

    Article  CAS  PubMed  Google Scholar 

  • Boutte CC, Crosson S (2013) Bacterial lifestyle shapes stringent response activation. Trends Microbiol 21:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    Article  CAS  PubMed  Google Scholar 

  • Brauner A, Shoresh N, Fridman O, Balaban NQ (2017) An experimental framework for quantifying bacterial tolerance. Biophys J 112:2664–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brileya KA, Camilleri LB, Fields MW (2014) 3D-fluorescence in situ hybridization of intact, anaerobic biofilm. Methods Mol Biol 1151:189–197

    Article  CAS  PubMed  Google Scholar 

  • Bryk R et al (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt A et al (2014) The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 459:333–344

    Article  CAS  PubMed  Google Scholar 

  • Cabral DJ, Wurster JI, Belenky P (2018) Antibiotic persistence as a metabolic adaptation: stress, metabolism, the host, and new directions. Pharmaceuticals (Basel) 11(1):14

    Article  Google Scholar 

  • Cameron DR, Shan Y, Zalis EA, Isabella V, Lewis K (2018) A genetic determinant of Persister cell formation in bacterial pathogens. J Bacteriol 200(17):e00303e00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan K et al (2002) Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc Natl Acad Sci U S A 99:3920–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang M, Zhou C, Kallenbach NR, Ren D (2011) Control of bacterial persister cells by Trp/Arg-containing antimicrobial peptides. Appl Environ Microbiol 77:4878–4885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheverton AM et al (2016) A Salmonella toxin promotes Persister formation through acetylation of tRNA. Mol Cell 63:86–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury N, Wood TL, Martinez-Vazquez M, Garcia-Contreras R, Wood TK (2016) DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113:1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Christensen LD et al (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320

    Article  CAS  PubMed  Google Scholar 

  • Chuang YM et al (2015) Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 6:e02428

    Article  PubMed  PubMed Central  Google Scholar 

  • Chubukov V, Sauer U (2014) Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 80:2901–2909

    Article  PubMed  PubMed Central  Google Scholar 

  • Claudi B et al (2014) Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158:722–733

    Article  CAS  PubMed  Google Scholar 

  • Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon BP et al (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon BP et al (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona F, Martinez JL (2013) Phenotypic resistance to antibiotics. Antibiotics 2:237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Breij A et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10(423):eaan4044

    Article  PubMed  Google Scholar 

  • De Groote VN et al (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73–79

    Article  PubMed  Google Scholar 

  • de Jong IG, Haccou P, Kuipers OP (2011) Bet hedging or not? a guide to proper classification of microbial survival strategies. Bioessays 33:215–223

    Article  PubMed  Google Scholar 

  • De Leenheer P, Cogan NG (2009) Failure of antibiotic treatment in microbial populations. J Math Biol 59:563–579

    Article  PubMed  Google Scholar 

  • de Leseleuc L, Harris G, KuoLee R, Chen W (2012) In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii. Antimicrob Agents Chemother 56:5397–5400

    Article  PubMed  PubMed Central  Google Scholar 

  • Defraine V et al (2016) Efficacy of Artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother 60:3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeon K et al (2009) Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrob Agents Chemother 53:1331–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W et al (2020) L-lysine potentiates aminoglycosides against Acinetobacter baumannii via regulation of proton motive force and antibiotics uptake. Emerg Microbes Infect 9:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar N, McKinney JD (2010) Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci U S A 107:12275–12280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diard M et al (2017) Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Dorr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan X et al (2016) l-Serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. J Antimicrob Chemother 71:2192–2199

    Article  PubMed  Google Scholar 

  • Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412

    Article  CAS  PubMed  Google Scholar 

  • Ethapa T et al (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699–709

    Article  PubMed  Google Scholar 

  • Feng J, Zhang S, Shi W, Zhang Y (2016) Ceftriaxone pulse dosing fails to eradicate biofilm-like microcolony B. burgdorferi persisters which are sterilized by daptomycin/doxycycline/cefuroxime without pulse dosing. Front Microbiol 7:1744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford CB et al (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  CAS  PubMed  Google Scholar 

  • Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418–421

    Article  CAS  PubMed  Google Scholar 

  • Fung DK, Chan EW, Chin ML, Chan RC (2010) Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 54:1082–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison AT et al (2015) Halogenated Phenazines that potently eradicate biofilms, MRSA Persister cells in non-biofilm cultures, and Mycobacterium tuberculosis. Angew Chem Int Ed Engl 54:14819–14823

    Article  CAS  PubMed  Google Scholar 

  • Gefen O, Chekol B, Strahilevitz J, Balaban NQ (2017) TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci Rep 7:41284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A et al (2018) Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations. EMBO J 37(9):e98026

    Article  PubMed  PubMed Central  Google Scholar 

  • Gi M et al (2014) A drug-repositioning screening identifies pentetic acid as a potential therapeutic agent for suppressing the elastase-mediated virulence of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:7205–7214

    Article  PubMed  PubMed Central  Google Scholar 

  • Giard JC et al (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22:2947–2954

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP et al (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98:13844–13849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goneau LW et al (2014) Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob Agents Chemother 58:2089–2097

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassi L, Maisetta G, Esin S, Batoni G (2017) Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 8:2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez A et al (2013) Beta-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4:1610

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JJ et al (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53:2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseltine WA, Block R (1973) Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A 70:1564–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z et al (2012) Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int J Antimicrob Agents 40:30–35

    Article  PubMed  Google Scholar 

  • Helaine S et al (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry TC, Brynildsen MP (2016) Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Sci Rep 6:25100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijazi S et al (2018) Antimicrobial activity of gallium compounds on ESKAPE pathogens. Front Cell Infect Microbiol 8:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong SH, Wang X, O'Connor HF, Benedik MJ, Wood TK (2012) Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol 5:509–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Honsa ES et al (2017) RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. mBio 8(1):e02124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard AT et al (2017) Mechanism of action of a membrane-active Quinoline-based antimicrobial on natural and model bacterial membranes. Biochemistry 56:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Iino R, Matsumoto Y, Nishino K, Yamaguchi A, Noji H (2013) Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. Front Microbiol 4:300

    Article  PubMed  PubMed Central  Google Scholar 

  • Imperi F, Leoni L, Visca P (2014) Antivirulence activity of azithromycin in Pseudomonas aeruginosa. Front Microbiol 5:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Imperi F et al (2013a) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi F et al (2013b) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110:7458–7463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarchum I (2014) A one-two punch knocks out biofilms. Nat Biotechnol 32:142

    Article  CAS  PubMed  Google Scholar 

  • Javid B et al (2014) Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A 111:1132–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiafeng L, Fu X, Chang Z (2015) Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters. Sci Rep 5:14247

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M et al (2020) Antimicrobial activities of peptide Cbf-K16 against drug-resistant Helicobacter pylori infection in vitro and in vivo. Microb Pathog 138:103847

    Article  CAS  PubMed  Google Scholar 

  • Joers A, Kaldalu N, Tenson T (2010) The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol 192:3379–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joers A, Tenson T (2016) Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci Rep 6:24055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubair M, Morris JG Jr, Ali A (2012) Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel "persister" phenotype. PLoS One 7:e45187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalan L, Wright GD (2011) Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med 13:e5

    Article  PubMed  Google Scholar 

  • Kaldalu N, Joers A, Ingelman H, Tenson T (2016) A general method for measuring Persister levels in Escherichia coli cultures. Methods Mol Biol 1333:29–42

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. mBio 2:e00100–e00111

    Article  PubMed  PubMed Central  Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keseler IM et al (2017) The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45:D543–D550

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM (2020) Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 46:665–688

    Article  CAS  PubMed  Google Scholar 

  • Khodaverdian V et al (2013) Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser KJ, Rubin EJ (2014) How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12:550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH et al (2017) Synergistic antibacterial effects of chitosan-Caffeic acid conjugate against antibiotic-resistant acne-related Bacteria. Mar Drugs 15(6):167

    Article  PubMed Central  Google Scholar 

  • Kim W et al (2018) A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391:209–213

    Article  CAS  PubMed  Google Scholar 

  • Komp Lindgren P, Klockars O, Malmberg C, Cars O (2015) Pharmacodynamic studies of nitrofurantoin against common uropathogens. J Antimicrob Chemother 70:1076–1082

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50:1199–1213

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ (2009) QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73:1020–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotte O, Volkmer B, Radzikowski JL, Heinemann M (2014) Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol Syst Biol 10:736

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R et al (2019) Exploring the new horizons of drug repurposing: a vital tool for turning hard work into smart work. Eur J Med Chem 182:111602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17:4406–4414

    Article  CAS  PubMed  Google Scholar 

  • Lehar SM et al (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lei J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leszczynska D, Matuszewska E, Kuczynska-Wisnik D, Furmanek-Blaszk B, Laskowska E (2013) The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS One 8:e54737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung V, Levesque CM (2012) A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194:2265–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR, Concepcion-Acevedo J, Udekwu KI (2014) Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Curr Opin Microbiol 21:18–21

    Article  CAS  PubMed  Google Scholar 

  • Levin-Reisman I et al (2010) Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods 7:737–739

    Article  CAS  PubMed  Google Scholar 

  • Levin-Reisman I et al (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–830

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  PubMed  Google Scholar 

  • Li C et al (2019) Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 183:111686

    Article  CAS  PubMed  Google Scholar 

  • Li F et al (2018) In vitro activity of beta-lactams in combination with beta-lactamase inhibitors against Mycobacterium tuberculosis clinical isolates. Biomed Res Int 2018:3579832

    PubMed  PubMed Central  Google Scholar 

  • Li T, Yin N, Liu H, Pei J, Lai L (2016) Novel inhibitors of toxin HipA reduce multidrug tolerant Persisters. ACS Med Chem Lett 7:449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebens V et al (2014) A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 71:39–54

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zheng Z, Kim W, Burgwyn Fuchs B, Mylonakis E (2018b) Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 10:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2017) Variable Persister gene interactions with (p)ppGpp for Persister formation in Escherichia coli. Front Microbiol 8:1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Kyle S, Straight PD (2018a) Antibiotic stimulation of a Bacillus subtilis migratory response. mSphere 3:00586

    Article  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106:4629–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luidalepp H, Joers A, Kaldalu N, Tenson T (2011) Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 193:3598–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D et al (2019) The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection. mBio 10(6):e01658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacGilvary NJ, Tan S (2018) Fluorescent Mycobacterium tuberculosis reporters: illuminating host-pathogen interactions. Pathog Dis 76(3):fty017

    Article  PubMed Central  Google Scholar 

  • Maiden MM et al (2018) Triclosan is an aminoglycoside adjuvant for eradication of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 62(6):e00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manina G, Dhar N, McKinney JD (2015) Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17:32–46

    Article  CAS  PubMed  Google Scholar 

  • Manuel J, Zhanel GG, de Kievit T (2010) Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 54:5173–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques CN, Morozov A, Planzos P, Zelaya HM (2014) The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 80:6976–6991

    Article  PubMed  PubMed Central  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  PubMed  Google Scholar 

  • Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS (2015) Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 6:1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer KJ, Taylor HB, Seidel J, Gates MF, Lewis K (2020) Pulse dosing of antibiotic enhances killing of a Staphylococcus aureus biofilm. Front Microbiol 11:596227

    Article  PubMed  PubMed Central  Google Scholar 

  • Michiels JE, Van den Bergh B, Verstraeten N, Michiels J (2016) Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 29:76–89

    Article  PubMed  Google Scholar 

  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj 1861:848–859

    Article  CAS  PubMed  Google Scholar 

  • Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192:1946–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci U S A 95:8916–8921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukamolova GV et al (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee D, Zou H, Liu S, Beuerman R, Dick T (2016) Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 11:643–650

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwangi J et al (2019) The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A 116(52):26516–26522

    Article  CAS  PubMed Central  Google Scholar 

  • Namugenyi SB, Aagesen AM, Elliott SR, Tischler AD (2017) Mycobacterium tuberculosis PhoY proteins promote persister formation by mediating Pst/SenX3-RegX3 phosphate sensing. mBio 8(4):e00494

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4:140–142

    Article  Google Scholar 

  • Nautiyal A, Patil KN, Muniyappa K (2014) Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother 69:1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Niepa TH, Gilbert JL, Ren D (2012) Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials 33:7356–7365

    Article  CAS  PubMed  Google Scholar 

  • Nikitushkin VD et al (2015) A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J 282:2500–2511

    Article  CAS  PubMed  Google Scholar 

  • Nistico L et al (2009) Fluorescence "in situ" hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol Biol 493:191–213

    Article  CAS  PubMed  Google Scholar 

  • Norton JP, Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuermberger E et al (2006) Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 50:2621–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Driscoll T, Crank CW (2015) Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 8:217–230

    PubMed  PubMed Central  Google Scholar 

  • Orman MA, Brynildsen MP (2013a) Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman MA, Brynildsen MP (2013b) Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 57:4398–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman MA, Brynildsen MP (2015) Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat Commun 6:7983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Bahar AA, Syed H, Ren D (2012) Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. PLoS One 7:e45778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Song F, Ren D (2013) Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. Bioorg Med Chem Lett 23:4648–4651

    Article  CAS  PubMed  Google Scholar 

  • Paranjape SS, Shashidhar R (2020) Glucose sensitizes the stationary and persistent population of Vibrio cholerae to ciprofloxacin. Arch Microbiol 202:343–349

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K et al (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal a site. Cell 112:131–140

    Article  CAS  PubMed  Google Scholar 

  • Peng B et al (2015) Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab 21:249–262

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter JI et al (2014) Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus. J Med Chem 57:8540–8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM (2009) Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petchiappan A, Chatterji D (2017) Antibiotic resistance: current perspectives. ACS Omega 2:7400–7409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinault L, Han JS, Kang CM, Franco J, Ronning DR (2013) Zafirlukast inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:2134–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portela CA, Smart KF, Tumanov S, Cook GM, Villas-Boas SG (2014) Global metabolic response of Enterococcus faecalis to oxygen. J Bacteriol 196:2012–2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    Article  CAS  PubMed  Google Scholar 

  • Prax M, Bertram R (2014) Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 4:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Prysak MH et al (2009) Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol Microbiol 71:1071–1087

    Article  CAS  PubMed  Google Scholar 

  • Pu Y et al (2016) Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 62:284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Que YA et al (2013) A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 8:e80140

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragheb MN et al (2019) Inhibiting the evolution of antibiotic resistance. Mol Cell 73:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadoss NS et al (2013) Small molecule inhibitors of trans-translation have broad-spectrum antibiotic activity. Proc Natl Acad Sci U S A 110:10282–10287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez M et al (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel-Vega A, Bernstein LR, Mandujano-Tinoco EA, Garcia-Contreras SJ, Garcia-Contreras R (2015) Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front Microbiol 6:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao NN, Liu S, Kornberg A (1998) Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J Bacteriol 180:2186–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliff WC, Denison RF (2011) Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun Integr Biol 4:98–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravagnani A, Finan CL, Young M (2005) A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genom 6:39

    Article  Google Scholar 

  • Reffuveille F, de la Fuente-Nunez C, Mansour S, Hancock RE (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58:5363–5371

    Article  PubMed  PubMed Central  Google Scholar 

  • Rego EH, Audette RE, Rubin EJ (2017) Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546:153–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roostalu J, Joers A, Luidalepp H, Kaldalu N, Tenson T (2008) Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosser A, Stover C, Pareek M, Mukamolova GV (2017) Resuscitation-promoting factors are important determinants of the pathophysiology in Mycobacterium tuberculosis infection. Crit Rev Microbiol 43:621–630

    Article  CAS  PubMed  Google Scholar 

  • Rowe SE, Conlon BP, Keren I, Lewis K (2016) Persisters: methods for isolation and identifying contributing factors--a review. Methods Mol Biol 1333:17–28

    Article  CAS  PubMed  Google Scholar 

  • Sakatos A et al (2018) Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Sci Adv 4:eaao1478

    Article  PubMed  PubMed Central  Google Scholar 

  • Saliba AE et al (2016) Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol 2:16206

    Article  CAS  PubMed  Google Scholar 

  • Scherrer R, Moyed HS (1988) Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J Bacteriol 170:3321–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW et al (2014) Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS Nano 8:8786–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW et al (2015) Pentobra: a potent antibiotic with multiple layers of selective antimicrobial mechanisms against Propionibacterium acnes. J Invest Dermatol 135:1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah D et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Y, Lazinski D, Rowe S, Camilli A, Lewis K (2015) Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio 6(2):e0007

    Article  Google Scholar 

  • Shapiro JA, Nguyen VL, Chamberlain NR (2011) Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J Med Microbiol 60:950–960

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K (2015) Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother 59:4616–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W et al (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R et al (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoering AL, Vulic M, Lewis K (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapels DAC et al (2018) Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362:1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Tang HJ et al (2019) Colistin-sparing regimens against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae isolates: Combination of tigecycline or doxycycline and gentamicin or amikacin. J Microbiol Immunol Infect 52:273–281

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y et al (2012) RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. J Bacteriol 194:1169–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodore A, Lewis K, Vulic M (2013) Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics 195:1265–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P et al (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in Guinea pigs. Nat Commun 6:6059

    Article  CAS  PubMed  Google Scholar 

  • Tkhilaishvili T, Lombardi L, Klatt AB, Trampuz A, Di Luca M (2018) Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int J Antimicrob Agents 52:842–853

    Article  CAS  PubMed  Google Scholar 

  • Tkhilaishvili T, Wang L, Perka C, Trampuz A, Gonzalez Moreno M (2020) Using bacteriophages as a Trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Front Microbiol 11:695

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrey HL, Keren I, Via LE, Lee JS, Lewis K (2016) High Persister mutants in Mycobacterium tuberculosis. PLoS One 11:e0155127

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Dewan PC, Siddique SA, Varadarajan R (2014) MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 289:4191–4205

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Attila C, Whiteley M, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74

    Article  CAS  PubMed  Google Scholar 

  • Ueta M et al (2008) Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. J Biochem 143:425–433

    Article  CAS  PubMed  Google Scholar 

  • Van Acker H, Sass A, Dhondt I, Nelis HJ, Coenye T (2014) Involvement of toxin-antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathog Dis 71:326–335

    Article  PubMed  Google Scholar 

  • Van den Bergh B, Fauvart M, Michiels J (2017) Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 41:219–251

    Article  PubMed  Google Scholar 

  • Van den Bergh B et al (2016) Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol 1:16020

    Article  PubMed  Google Scholar 

  • van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Laslop N, Lee H, Neyfakh AA (2006) Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 188:3494–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8:431–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega NM, Allison KR, Samuels AN, Klempner MS, Collins JJ (2013) Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A 110:14420–14425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraeten N et al (2015) Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 59:9–21

    Article  CAS  PubMed  Google Scholar 

  • Walz JM et al (2010) Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit Care Med 38:2095–2102

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2013) Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci U S A 110:E2510–E2517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenthzel AM, Stancek M, Isaksson LA (1998) Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett 421:237–242

    Article  CAS  PubMed  Google Scholar 

  • Westermann AJ, Barquist L, Vogel J (2017) Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog 13:e1006033

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmaerts D, Windels EM, Verstraeten N, Michiels J (2019) General mechanisms leading to Persister formation and awakening. Trends Genet 35:401–411

    Article  CAS  PubMed  Google Scholar 

  • Wilmaerts D et al (2018) The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. mBio 9(4):e00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windels EM et al (2019) Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J 13:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood DN, Chaussee MA, Chaussee MS, Buttaro BA (2005) Persistence of Streptococcus pyogenes in stationary-phase cultures. J Bacteriol 187:3319–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu N et al (2015) Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol 6:1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Yu P-L, Flint S (2017) Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control 77:243–250

    Article  CAS  Google Scholar 

  • Wu Y, Vulic M, Keren I, Lewis K (2012) Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56:4922–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuyts J, Van Dijck P, Holtappels M (2018) Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog 14:e1007301

    Article  PubMed  PubMed Central  Google Scholar 

  • **ao H et al (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Park JH, Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284:28746–28753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S et al (2015) Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms. Sci Rep 5:18578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuksel M, Power JJ, Ribbe J, Volkmann T, Maier B (2016) Fitness trade-offs in competence differentiation of Bacillus subtilis. Front Microbiol 7:888

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalis EA et al (2019) Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. mBio 10(5):e01930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2014) Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 3:e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yew WW, Barer MR (2012) Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 56:2223–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Hara H, Kato I, Inouye M (2005) Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem 280:3143–3150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamta Singla, Chaudhary, V., Ghosh, A. (2022). Bacterial Multidrug Tolerance and Persisters: Understanding the Mechanisms, Clinical Implications, and Treatment Strategies. In: Kumar, V., Shriram, V., Paul, A., Thakur, M. (eds) Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-3120-7_2

Download citation

Publish with us

Policies and ethics

Navigation