Graphene-Based Materials in Biosensing, Bioimaging, and Therapeutics

  • Chapter
  • First Online:
Graphene-based Materials in Health and Environment

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Biomedical research has become extremely important in these days due to its direct impact on human health. The quest for the development of sophisticated materials for sensitive sensing, selective imaging and effective therapeutics has led to the creation of a unique class of materials known as graphene-based materials (GBMs). GBMs can be broadly classified into three groups: graphene-based nanocomposites, graphene quantum dots, and graphene-wrapped hybrids. These materials possess remarkable electrical, physical, and chemical properties, which can be exploited to develop efficient sensors, probes, and drugs. In this chapter, a detailed account about the synthetic strategies of these materials along with the mechanisms governing their performance in biosensing, bioimaging, and therapeutics is presented. The chapter highlights the suitability of GBMs in non-conventional and emerging techniques such as nonlinear photonics and photoacoustic imaging. The GBMs can also be employed to fabricate synergistic materials that are capable of simultaneous imaging and therapeutic actions. Therefore, the GBMs provide a promising platform for cutting-edge developments in the field of biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17(8):1225–1236

    Article  Google Scholar 

  2. Hazra S, Joshi H, Ghosh BK, Ahmed A, Gibson T, Millner P, Ghosh NN (2015) Development of a novel and efficient H2O2 sensor by simple modification of a screen printed Au electrode with Ru nanoparticle loaded functionalized mesoporous SBA15. RSC Adv 5(43):34390–34397

    Article  Google Scholar 

  3. Lehmana SE, Larsen SC (2014) Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano 1:200–213

    Article  Google Scholar 

  4. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294

    Article  Google Scholar 

  5. Kelarakis A (2015) Graphene quantum dots: in the crossroad of graphene, quantum dots and carbogenic nanoparticles. Curr Opin Colloid Interface Sci 20:354–361

    Article  Google Scholar 

  6. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    Article  Google Scholar 

  7. Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46(46):8748–8758

    Article  Google Scholar 

  8. Kannan RY, Salacinski HJ, Vara DS, Odlyha M, Seifalian AM (2006) Review paper: principles and applications of surface analytical techniques at the vascular interface. J Biomater Appl 21(1):5–32

    Article  Google Scholar 

  9. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124(32):9606–9612

    Article  Google Scholar 

  10. Huang X, QiX Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  11. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  Google Scholar 

  12. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424

    Article  Google Scholar 

  13. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  14. Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  Google Scholar 

  15. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  17. Ham H, Park NH, Kang I, Kim HW, Shim KB (2012) Catalyst-free fabrication of graphene nanosheets without substrates using multiwalled carbon nanotubes and a spark plasma sintering process. Chem Commun 48:6672–6674

    Article  Google Scholar 

  18. Schaffel F, Wilson M, Warner JH (2012) Motion of light adatoms and molecules on the surface of few-layer graphene. ACS Nano 5(12):9428–9441

    Article  Google Scholar 

  19. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73

    Article  Google Scholar 

  20. Mevold AH, Hsu WW, Hardiansyah A, Huang LY, Yang MC, Liu TY, Chan TY, Wang KS, Su YA, Jeng RJ, Wang JK, Wang YL (2015) Fabrication of gold nanoparticles/graphene-PDDA nanohybrids for bio-detection by SERS nanotechnology. Nanoscale Res Lett 10:397

    Article  Google Scholar 

  21. Tai H, Zhen Y, Liu C, Ye Z, **e G, Du X, Jiang Y (2016) Facile development of high performance QCM Humidity sensor based on protonated polyethyleneimine-graphene oxide nanocomposite thin film. Sens Actuat B Chem 230:501–509

    Article  Google Scholar 

  22. Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KCW, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8(15):8276–8287

    Article  Google Scholar 

  23. Panigrahy B, Sarmaa DD (2015) Enhanced photocatalytic efficiency of AuPd nanoalloy decorated ZnO-reduced graphene oxide nanocomposites. RSC Adv 5:8918–8928

    Article  Google Scholar 

  24. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  Google Scholar 

  25. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  Google Scholar 

  26. Zhang F, Liu F, Wang C, **n X, Liu J, Guo S, Zhang J (2016) Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl Mater Interfaces 8(3):2104–2110

    Article  Google Scholar 

  27. Ye R, **ang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel ELG, Hwang CC, Ruan G, Ceriotti G, Raji ARO, Martí AA, Tour JM (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943

    Google Scholar 

  28. Sreejith S, Ma X, Zhao Y (2012) Graphene oxide wrap** on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J Am Chem Soc 134:17346–17349

    Article  Google Scholar 

  29. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrap** bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288

    Article  Google Scholar 

  30. Mohanty N, Fahrenholtz M, Nagaraja A, Boyle D, Berry V (2011) Impermeable graphenic encasement of bacteria. Nano Lett 11:1270–1275

    Article  Google Scholar 

  31. Lanni F, Bailey B, Farkas DL, Taylor DL (1993) Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging 3(1):187–196

    Article  Google Scholar 

  32. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70(13):2446–2453

    Article  Google Scholar 

  33. Koike C, Watanabe M, Oku N, Tsukada H, Irimura T, Okada S (1997) Tumor cells with organ-specific metastatic ability show distinctive trafficking in vivo: analyses by positron emission tomography and bioimaging. Cancer Res 15(57):3612–3619

    Google Scholar 

  34. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514

    Article  Google Scholar 

  35. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476

    Article  Google Scholar 

  36. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  Google Scholar 

  37. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074

    Article  Google Scholar 

  38. Kanga X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(12):901–905

    Article  Google Scholar 

  39. Liu B, Tang D, Tang J, Su B, Lia Q, Chen G (2011) A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Analyst 136:2218–2220

    Article  Google Scholar 

  40. Lina D, Wua J, Jua H, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158

    Article  Google Scholar 

  41. Nguyena KT, Zhao Y (2014) Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6:6245–6266

    Article  Google Scholar 

  42. Tian J, Huang T, Wang P, Lu J (2015) GOD/HRP bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing. J Electrochem Soc 162(12):B319–B325

    Article  Google Scholar 

  43. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  Google Scholar 

  44. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29(1):159–166

    Article  Google Scholar 

  45. Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal Chem 85(23):11643–11649

    Article  Google Scholar 

  46. Gopalan AI, Muthuchamy N, Komathi S, Lee KP (2015) A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron 15:30540–30546

    Google Scholar 

  47. Jang HD, Kim SK, Chang H, Roh KM, Choi JW (2012) A glucose biosensor based on TiO2-graphene composite. Biosens Bioelectron 38:184–188

    Article  Google Scholar 

  48. Chen Y, Li Y, Sun D, Tian D, Zhang J, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611

    Article  Google Scholar 

  49. Montornes JM, Vreeke MS, Katakis I (2008) Glucose biosensors. In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, Chichester. doi:10.1002/9780470753842.ch5

  50. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  Google Scholar 

  51. Hua Y, Li F, Han D, Wu T, Zhang Q, Niu L, Bao Y (2012) Simple and label-free electrochemical assay for signal-On DNA hybridization directly at undecorated graphene oxide. Anal Chim Acta 753:82–89

    Article  Google Scholar 

  52. Ali S, Hassan A, Hassan G, Bae J, Lee CH (2016) All-printed humidity sensor based on gmethyl-red/methyl-red composite with high sensitivity. Carbon 106:23–32

    Article  Google Scholar 

  53. Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoau carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996

    Article  Google Scholar 

  54. Zhang Y, Bai X, Wang X, Shiu KK, Zhu Y, Jiang H (2014) Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86:9459–9465

    Article  Google Scholar 

  55. Wang H, **a B, Yan Y, Li N, Wang JY, Wang X (2013) Water-soluble polymer exfoliated graphene: as catalyst support and sensor. J Phys Chem B 117:5606–5613

    Article  Google Scholar 

  56. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan CA (2010) Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  Google Scholar 

  57. Chen Q, Wei W, Lin JM (2011) Homogeneous detection of concanavalin a using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens Bioelectron 26(11):4497–4502

    Article  Google Scholar 

  58. Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, Xu C (2015) Building An Aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces 7(14):7492–7496

    Article  Google Scholar 

  59. Chang H, Tang L, Wang Y, Li JJJ (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346

    Article  Google Scholar 

  60. Zhang M, Yin BC, Wang XF, Ye BC (2011) Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 47:2399–2401

    Article  Google Scholar 

  61. Li H, Sun DE, Liu Y, Liu Z (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156

    Article  Google Scholar 

  62. Myung S, Solanki A, Kim C, Park J, Kim KS, Lee KB (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225

    Article  Google Scholar 

  63. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  Google Scholar 

  64. Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499

    Article  Google Scholar 

  65. Huang Y, Dong X, Liu Y, Lic LL, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362

    Article  Google Scholar 

  66. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090

    Article  Google Scholar 

  67. Fu X, Chen L, Li J, Lin M, You H, Wang W (2012) Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosen Bioelectron 34(1):227–231

    Article  Google Scholar 

  68. Huang KJ, Liu YJ, Cao JT, Wang HB (2014) An aptamer electrochemical assay for sensitive detection of immunoglobulin e based on tungsten disulfide-graphene composites and gold nanoparticles. RSC Adv 4:36742–36748

    Article  Google Scholar 

  69. Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Boukherroub R, Szunerits S (2014) Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem 86(22):11211–11217

    Article  Google Scholar 

  70. Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-Type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493

    Article  Google Scholar 

  71. Chung K, Rani A, Lee JE, Kim JE, Kim Y, Yang H, Kim SO, Kim D, Kim DH (2015) Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. ACS Appl Mater Interfaces 7:144–151

    Article  Google Scholar 

  72. Ma X, Qu Q, Zhao Y, Luo Z, Zhao Y, Ng KW, Zhao Y (2013) Graphene oxide wrapped gold nanoparticles for intracellular raman imaging and drug delivery. J Mater Chem B 1:6495–6500

    Article  Google Scholar 

  73. Xu S, Man B, Jiang S, Wang J, Wei J, Xu S, Liu H, Gao S, Liu H, Li Z, Li H, Qiu H (2015) Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition As surface-enhanced raman scattering substrate for label-free detection of adenosine. ACS Appl Mater Interfaces 7:10977–10987

    Article  Google Scholar 

  74. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  Google Scholar 

  75. Hu SH, Chen YW, Hung YT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754

    Article  Google Scholar 

  76. Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide−polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem 22:2558–2567

    Article  Google Scholar 

  77. Oh SD, Kim J, Lee DH, Kim JH, Jang CW, Kim S, Choi SH (2016) Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography. J Phys D Appl Phys 49:025308

    Article  Google Scholar 

  78. Bartelmess J, Quinn SJ, Giordani S (2015) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and raman imaging. Chem Soc Rev 44:4672–4698

    Article  Google Scholar 

  79. Qu D, Sun Z, Zheng M, Li J, Zhang Y, Zhang G, Zhao H, Liu X, ** Z (2015) Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv Optical Mater 3:360–367

    Article  Google Scholar 

  80. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  Google Scholar 

  81. Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N (2014) Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett 3:1064–1068

    Article  Google Scholar 

  82. Wang Y, Chen JT, Yan XP (2013) Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal Chem 85:2529–2535

    Article  Google Scholar 

  83. Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2:84–85

    Article  Google Scholar 

  84. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene − nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531

    Article  Google Scholar 

  85. Zhou B, Shi B, ** D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10:924–936

    Article  Google Scholar 

  86. Nguyen KT, Sreejith S, Joseph J, He T, Borah P, Guan EY, Lye SW, Sun H, Zhao Y (2014) Poly(acrylic acid)-capped and dye-loaded graphene oxide-mesoporous silica: a nano-sandwich for two-photon and photoacoustic dual-mode imaging. Part Part Syst Charact 31:1060–1066

    Article  Google Scholar 

  87. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z (2013) Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20):4786–4793

    Article  Google Scholar 

  88. Turcheniuk K, Boukherroub R, Szunerits S (2015) Gold-graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 3:4301–4324

    Article  Google Scholar 

  89. Mendes RG, Bachmatiuk A, El-Gendy AA, Melkhanova S, Klingeler R, Büchner B, Rümmeli MH (2012) A facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116(44):23749–23756

    Article  Google Scholar 

  90. Kumar KS, Kumar VB, Paik P (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart 2013:672059

    Article  Google Scholar 

  91. Jiang BP, Hu LF, Wang DJ, Ji SC, Shen XC, Liang H (2012) Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. J Mater Chem B 2:7141–7148

    Article  Google Scholar 

  92. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu S (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  93. Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y (2015) Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces 7:9807–9816

    Article  Google Scholar 

  94. Kim YK, Na HK, Kim S, Jang H, Chang SJ, Min DH (2015) One-pot synthesis of multifunctional Au@graphene oxide nanocolloid Core@Shell nanoparticles for raman bioimaging, photothermal, and photodynamic therapy. Small 11(21):2527–2535

    Article  Google Scholar 

  95. Moon H, Kumar D, Kim H, Sim C, Chang JH, Kim JM, Kim H, Lim DK (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719

    Article  Google Scholar 

  96. Liu Y, Bai J, Jia X, Jiang X, Guo Z (2015) Fabrication of multifunctional SiO2@GN-serum composites for chemo-photothermal synergistic therapy. ACS Appl Mater Interfaces 7(1):112–121

    Article  Google Scholar 

  97. Zheng FF, Zhang PH, ** Y, Chen JJ, Li LL, Zhu JJ (2015) Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal Chem 87(23):11739–11745

    Article  Google Scholar 

  98. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831

    Article  Google Scholar 

  99. Melamed JR, Edelstein RS, Day ES (2015) Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9(1):6–11

    Article  Google Scholar 

  100. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee C-S, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    Google Scholar 

  101. Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Adv Mat 24(13):1722–1728

    Article  Google Scholar 

  102. Bian X, Song ZL, Qian Y, Gao W, Cheng ZQ, Chen L, Liang H, Ding D, Nie XK, Chen Z, Tan W (2014) Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 4:6093

    Article  Google Scholar 

  103. He D, He X, Wang K, Zou Z, Yang X, Li X (2014) Remote-controlled drug release from graphene oxide-capped mesoporous silica to cancer cells by photoinduced pH-jump activation. Langmuir 30:7182–7189

    Article  Google Scholar 

  104. Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the NTU-A*Star Silicon Technologies Centre of Excellence under the program Grant No. 11235100003 and the NTU-Northwestern Institute for Nanomedicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sreejith, S., Joshi, H., Zhao, Y. (2016). Graphene-Based Materials in Biosensing, Bioimaging, and Therapeutics. In: Gonçalves , G., Marques, P., Vila, M. (eds) Graphene-based Materials in Health and Environment. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-45639-3_2

Download citation

Publish with us

Policies and ethics

Navigation