Mimicking Human Kidney: Research Towards Better Solutions for Kidney Failure

  • Chapter
  • First Online:
Modern Techniques in Biosensors

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 327))

  • 855 Accesses

Abstract

The human body is a highly sophisticated machine that is not fully understood to date. The body function is highly dependent on the versatile functions performed by different organs, which have their diverse arrangement of cells. Every organ (perhaps every body part) is prone to damage and malfunction because of the topological conditions, lifestyle, habitats, and food chemicals. Hel** humans to lead an easy, luxurious, and healthy life are the primary goal of any technology, especially extending human life is the ultimate target of medical instrumentation. The importance of develo** innovative techniques for disease diagnosis and treatment are burning topics since the start of the medical and pharmaceutical industry. Kidney failure is one of the common health issues worldwide, which is a slow poison affecting 10% of the world population. The importance of replacing the kidney is essential to extend a patient life. This review focuses on Organ-on-Chip technology with a major focus on Kidney-on-Chip (KOC). The evolution of techniques to diagnose and treat organ failure is elaborately presented. Major emphasis solely on the development of kidney failure causes, diagnostic techniques, replacement techniques are reported with a timeline of developments. The major functions of the kidney that have been achieved artificially so far are reviewed to the deepest level. The future directions in this field are predicted and presented. MEMS and microfluidics allow the design and manufacturing of devices at microscale without compromising the actual functionalities, especially in terms of disease diagnosis and treatment. Microfluidics technology revolutionized the development of artificial organ industry, the chances of realizing an organ substantially improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jang, K.J., Suh, K.Y.: A multi-layer microfluidic device for efficient Culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010)

    Article  Google Scholar 

  2. Maschmeyer, I., Lorenz, A.K., Schimek, K., Hasenberg, T., Ramme, A.P., Hubner, J., Lindner, M., Drewell, C., Bauer, S., Thomas, A., Sambo, N.S., Sonntag, F., Lauster, R., Marx, U.: A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015)

    Google Scholar 

  3. Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y., Fujii, T.: An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8, 741–746 (2008)

    Google Scholar 

  4. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  Google Scholar 

  5. Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware, R.E., Fletcher, D.A., Lam, W.A.: In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012)

    Article  Google Scholar 

  6. Walsh, C.L., Babin, B.M., Kasinskas, R.W., Foster, J.A., McGarry, M.J., Forbes, N.S.: A multipurpose microfluidic device designed to mimic micro-environment gradients and develop targeted cancer therapeutics. Lab Chip 9, 545–554 (2009)

    Article  Google Scholar 

  7. Torisawa, Y.S., Spina, C.S., Mammoto, T., Mammoto, A., Weaver, J.C., Tat, T., Collins, J.J., Ingber, D.E.: Bone marrow-on-a-chip replicates hematopoi-Eticniche physiology in-vitro. Nat. Methods 11, 663–669 (2014)

    Article  Google Scholar 

  8. Zhang, C., Zhao, Z., Abdul Rahim, N.A., van Noort, D., Yu, H.: Lab Chip 9(22), 3185–3192 (2009)

    Article  Google Scholar 

  9. Fitzpatrick S, Sprando R (2019) Advancing regulatory science through innovation: in vitro microphysiological systems. Cell. Mol. Gastroenterol. Hepatol. 7(1), 239

    Google Scholar 

  10. Liu, Y., Gill, E., Huang, Y.Y.S.: Microfluidic on-chip biomimicry for 3D cell culture: a ft-for-purpose investigation from the end user standpoint. Future Sci. OA 3(2), FSO173 (2017)

    Google Scholar 

  11. Williamson, A., Singh, S., Fernekorn, U., Schober, A.: The future of the patient-specific body-on-a-chip. Lab Chip 13, 3471–3480 (2013). https://doi.org/10.1039/c3lc50237fhttps://doi.org/10.1039/c3lc50237f

    Article  Google Scholar 

  12. Kim, K., Ohashi, K., Utoh, R., Kano, K., Okano, T.: Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33, 1406–1413 (2012). https://doi.org/10.1016/j.biomaterials.2011.10.084https://doi.org/10.1016/j.biomaterials.2011.10.084

    Article  Google Scholar 

  13. Xu, Y., Jang, K., Yamashita, T., Tanaka, Y., Mawatari, K., Kitamori, T.: Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics. Anal. Bioanal. Chem. 402, 99–107 (2012). https://doi.org/10.1007/s00216-011-5296-5https://doi.org/10.1007/s00216-011-5296-5

    Article  Google Scholar 

  14. El-Ali, J., Sorger, P.K., Jensen, K.F.: Cells on chips. Nature 442 (2006). https://doi.org/10.1038/nature05063

  15. Bhushan, A., Martucci, N.J., Usta, O.B., Yarmush, M.L.: New technologies in drug metabolism and toxicity screening: organ-to-organ interaction. Expert Opin. Drug Metab. Toxicol. 12, 475–477 (2016). https://doi.org/10.1517/17425255.2016.1162292 (PMC free article)

  16. Esch, E.W., Bahinski, A., Huh, D.: Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015). https://doi.org/10.1038/nrd4539[PMCfreearticle]https://doi.org/10.1038/nrd4539[PMCfreearticle]

    Article  Google Scholar 

  17. Toh, Y.C., Lim, T.C., Tai, D., **ao, G., van Noort, D., Yu, H.: A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9, 2026–2035 (2009). https://doi.org/10.1039/b900912dhttps://doi.org/10.1039/b900912d

    Article  Google Scholar 

  18. Ghaemmaghami, A.M., Hancock, M.J., Harrington, H., Kaji, H., Khademhosseini, A.: Biomimetic tissues on a chip for drug discovery. Drug Discov. Today 17, 173–181 (2012). https://doi.org/10.1016/j.drudis.2011.10.029https://doi.org/10.1016/j.drudis.2011.10.029

    Article  Google Scholar 

  19. No, D.Y., Lee, K.H., Lee, J., Lee, S.H.: 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15, 3822–3837 (2015). https://doi.org/10.1039/C5LC00611Bhttps://doi.org/10.1039/C5LC00611B

    Article  Google Scholar 

  20. Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A., Toner, M.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450 (2007)

    Google Scholar 

  21. Young, E.W.K.: Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr. Biol. 5(9), 1096–1109 (2013). https://doi.org/10.1039/c3ib40076jhttps://doi.org/10.1039/c3ib40076j

    Article  Google Scholar 

  22. Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2(8), 599 (2005)

    Google Scholar 

  23. Higgins, J.M., Eddington, D.T., Bhatia, S.N., Mahadevan, L.: Sickle cell vasoocclusion and rescue in a microfluidic device. PNAS 104(51), 20496–20500 (2007)

    Google Scholar 

  24. Joanne Wang, C., Li, X., Lin, B., Shim, S., Ming, G., Levchenko, A.: A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8, 227–237 (2008)

    Google Scholar 

  25. McNamara, B.J., Diouf, B., Douglas-Denton, R.N., Hughson, M.D., Hoy, W.E., Bertram, J.F.: Comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans. Nephrol. Dial Transplant. 25, 1514–1520 (2010)

    Article  Google Scholar 

  26. Manalich, A., Reyes, L., Herrera, M., Melendi, C., Fundora, I.: Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–777 (2000)

    Google Scholar 

  27. Jung, J.S., Preston, G.M., Smith, B.L., Gugginoll, W.B., Agre, P.: Molecular structure of the water channel through aquaporin CHIP. J. Biol. Chem. 269(20), 14648–14654 (1994)

    Google Scholar 

  28. Sateesh, J., Guha, K., Dutta, A., Sengupta, P., Agarwal, A., Srinivasa Rao, K.: Recreating the size dependent re-absorption function of proximal convoluted tubule towards artificial kidney applications-structural analysis and computational study. Artif. Organs (2020)

    Google Scholar 

  29. Baquet, A., Gaussin, V., Bollen, M., Stalmans, W., Hue, L.: Mechanism of activation of liver acetyl-CoA carboxylase by cell swelling. Eur. J. Biochem. FEBS 217, 1083–1089 (1993)

    Article  Google Scholar 

  30. Peak, M., Al-Habori, M., Agius, L.: Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin. Biochem. J. 282(3), 797–805 (1992)

    Google Scholar 

  31. Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001)

    Article  Google Scholar 

  32. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)

    Article  Google Scholar 

  33. Traub, O., Berk, B.C.: Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677–685 (1998)

    Article  Google Scholar 

  34. Li, F., **e, X., Fan, J., Li, Z., Wu, J., Zheng, R.: Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro. J. Zhejiang Univ. Sci. B 10(9), 659–667 (2009)

    Google Scholar 

  35. Cai, Z., **n, J., Pollock, D.M., Pollock, J.S.: Shear stress-mediated NO production in inner medullary collecting duct cells. Am. J. Physiol. Renal. Physiol. 279, F270–F274 (2000)

    Google Scholar 

  36. Liu, W., Xu, S., Woda, C., Kim, P., Weinbaum, S., Satlin, L.M.: Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am. J. Physiol. Renal. Physiol. 285, F998–F1012 (2003)

    Google Scholar 

  37. Schnermann, J., Wahl, M., Liebau, G., Fischbach, H.: Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Arch. 304, 90–103 (1968)

    Article  Google Scholar 

  38. Giebisch, G., Windhager, E.E.: Characterization of renal tubular transport of sodium chloride and water as studied in single nephrons. Am. J. Med. 34, 1–6 (1963)

    Article  Google Scholar 

  39. Du, Z., et al.: Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments. Am. J. Physiol. Renal. Physiol. 290, F289–F296 (2006)

    Article  Google Scholar 

  40. Malnic, G., Berliner, R.W., Giebisch, G.: Flow dependence of K+ secretion in cortical distal tubules of the rat. Am. J. Physiol. 256, F932–F941 (1989)

    Google Scholar 

  41. Satlin, L.M., Sheng, S., Woda, C.B., Kleyman, T.R.: Epithelial Na(+) channels are regulated by flow. Am. J. Physiol. Renal. Physiol. 280, F1010–F1018 (2001)

    Article  Google Scholar 

  42. Du, Z., Duan, Y., Yan, Q.S., Weinstein, A.M., Weinbaum, S., Wang, T.: Mechanosensory function of microvilli of the kidney proximal tubule. PNAS 101(35), 13068–13073 (2004)

    Google Scholar 

  43. Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A.M., Yang, C.W.: Chronic kidney disease: global dimension and perspectives. Lancet 382(9888), 260–272 (2013)

    Article  Google Scholar 

  44. Jang, K.-J., Mehr, A.P., Hamilton, G.A., McPartlin, L.A., Chung, S., Suh, K.-Y., Ingber, D.E.: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119 (2013)

    Google Scholar 

  45. Weia, Z., Amponsah, P.K., Al-Shatti, M., Nie, Z., Bandyopadhyay, B.: Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab Chip 12(20), 4037–4040 (2012)

    Google Scholar 

  46. Kensinger, C., et al.: First implantation of silicon nanopore membrane hemofilters. ASAIO J. (Am. Soc. Artif. Inter. Org. 1992) 62(4), 491–495 (2016). https://doi.org/10.1097/MAT.0000000000000367

  47. Suwanpayak, N., Jalil, M.A., Aziz, M.S., Ismail, F.D., Ali, J., Yupapin, P.P.: Blood cleaner on-chip design for artificial human kidney manipulation. Int. J. Nanomed. 6, 957–964 (2011)

    Google Scholar 

  48. Liu, W., Murcia, N.S., Duan, Yi., Weinbaum, S., Yoder, B.K., Schwiebert, E., Satlin, L.M.: Mechanoregulation of intracellular Ca2 concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am. J. Physiol. Renal. Physiol. 289, F978–F988 (2005)

    Article  Google Scholar 

  49. Wang, L., Tao, T., Su, W., Yu, H., Yu, Y., Qin, J.: A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip 17(10), 1749–1760 (2017)

    Article  Google Scholar 

  50. Zhou, M., et al.: Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6, 31771 (2016). https://doi.org/10.1038/srep31771

  51. Weber, E.J., Chapron, A., Chapron, B.D., Voellinger, J.L., Lidberg, K.A., Yeung, C.K., Wang, Z., Yamaura, Y., Hailey, D.W., Neumann, T., Shen, D.D., Thummel, K.E., Muczynski, K.A., Himmelfarb, J., Kelly, E.J.: Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90(3), 627–637 (2016). ISSN 0085-2538. https://doi.org/10.1016/j.kint.2016.06.011

  52. Jang, K.-J., Mehr, A.P., Hamilton, G.A., McPartlin, L.A., Chung, S., Suh, K.-Y., Ingber, D.E.: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5(9), 1119–1129 (2013). https://doi.org/10.1039/c3ib40049b

  53. Vriend, J., Nieskens, T.T.G., Vormann, M.K., et al.: Screening of drug-transporter interactions in a 3D microfluidic renal proximal tubule on a chip. AAPS J 20, 87 (2018). https://doi.org/10.1208/s12248-018-0247-0https://doi.org/10.1208/s12248-018-0247-0

    Article  Google Scholar 

  54. Lin, N.Y.C., Homan, K.A., Robinson, S.S., Kolesky, D.B., Duarte, N., Moisan, A., Lewis, J.A.: Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl. Acad. Sci. 116(12), 5399–5404 (2019). https://doi.org/10.1073/pnas.1815208116

  55. Weber, E.J., Chapron, A., Chapron, B.D., Voellinger, J.L., Lidberg, K.A., Yeung, C.K., Wang, Z., et al.: Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90(3), 627–637 (2016)

    Google Scholar 

  56. Guha, K., Sateesh, J., Dutta, A., et al.: Mimicking kidney re-absorption using microfluidics by considering hydrostatic pressure inside kidney tubules: structural and analytical study. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04720-9https://doi.org/10.1007/s00542-019-04720-9

    Article  Google Scholar 

  57. Sateesh, J., Guha, K., Dutta, A., et al.: Regenerating re-absorption function of proximal convoluted tubule using microfluidics for kidney-on-chip applications. SN Appl. Sci. 2, 39 (2020). https://doi.org/10.1007/s42452-019-1840-2https://doi.org/10.1007/s42452-019-1840-2

    Article  Google Scholar 

  58. Jang, K.-J., Cho, H.S., Kang, D.H., Bae, W.G., Kwon, T.-H., Suh, K.-Y.: Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. 3(2), 134–141 (2011)

    Google Scholar 

  59. Shum, H.C., Kim, J.-W., Weitz, D.A.: Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J. Am. Chem. Soc. 130(29), 9543–9549 (2008)

    Google Scholar 

  60. Friend, J., Yeo, L.: Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2), 026502 (2010)

    Article  Google Scholar 

  61. Ren, K., Zhou, J., Hongkai, Wu.: Materials for microfluidic chip fabrication. Acc. Chem. Res. 46(11), 2396–2406 (2013)

    Article  Google Scholar 

  62. Lai, T.T., **e, D., Zhou, C.H., Cai, G.X.: Copper-catalyzed inter/intramolecular N-alkenylation of benzimidazoles via tandem processes involving selectively mild iodination of sp3 C-H bond at α-position of ester. J. Org. Chem. 81(19), 8806–8815 (2016)

    Article  Google Scholar 

  63. **a, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

  64. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D.E.: Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3(1), 335–373 (2001)

    Article  Google Scholar 

  65. Kane, R.S., Takayama, S., Ostuni, E., Ingber, D.E., Whitesides, G.M.: Patterning proteins and cells using soft lithography. Biomaterials 20(23–24), 2363–2376 (1999)

    Article  Google Scholar 

  66. Rogers, J.A., Nuzzo, R.G.: Recent progress in soft lithography. Mater. Today 8(2), 50–56 (2005)

    Article  Google Scholar 

  67. Paul, M.T.Y., Kim, D., Saha, M.S., Stumper, J., Gates, B.D.: Patterning catalyst layers with microscale features by soft lithography techniques for proton exchange membrane fuel cells. ACS Appl. Energy Mater. (2020)

    Google Scholar 

  68. Kim, S.M., Leeb, S.H., Suh, K.Y.: Cell research with physically modified microfluidic channels: a review. Lab Chip 8, 1015–1023, 1015 (2008)

    Google Scholar 

  69. Striker, G.E., Striker, L.J.: Glomerular cell culture. Lab. Investig. J. Tech. Methods Pathol. 53(2), 122–131 (1985)

    Google Scholar 

  70. Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103(4), 655–663 (2009)

    Article  Google Scholar 

  71. Di Carlo, D., Wu, L.Y., Lee, L.P.: Dynamic single cell culture array. Lab on a Chip 6(11), 1445–1449 (2006)

    Google Scholar 

  72. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R., Lee, L.P.: Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89(1), 1–8 (2005)

    Article  Google Scholar 

  73. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., Roder, J.C.: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. 90(18), 8424–8428 (1993)

    Article  Google Scholar 

  74. Edmondson, R., Broglie, J.J., Adcock, A.F., Yang, L.: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12(4), 207–218 (2014)

    Google Scholar 

  75. Mehling, M., Tay, S.: Microfluidic cell culture. Curr. Opin. Biotechnol. 25, 95–102 (2014)

    Article  Google Scholar 

  76. Sung, J.H., Kam, C., Shuler, M.L.: A microfluidic device for a pharmacokinetic pharmacodynamics (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sateesh, J., Guha, K., Dutta, A., Sengupta, P., Agarwal, A., Srinivasa Rao, K. (2021). Mimicking Human Kidney: Research Towards Better Solutions for Kidney Failure. In: Dutta, G., Biswas, A., Chakrabarti, A. (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, vol 327. Springer, Singapore. https://doi.org/10.1007/978-981-15-9612-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9612-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9611-7

  • Online ISBN: 978-981-15-9612-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation