Optimal Strategy for Obtaining Excellent Energy Storage Density in Polymer Nanocomposite Materials

  • Conference paper
  • First Online:
Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 604 Accesses

Abstract

Storage of electrical energy is the topic of major concern now a days due to the increased demand of electrical energy in day to day life. So there is need to develop the high performance energy storage devices. Enhancement of energy density of the dielectric capacitor is the major area of research. This paper deals with all the aspects and factors that affect the energy density of the material used as dielectric in dielectric capacitors. Kee** in mind the environmental safety multilayer structure of biodegradable polymer nanocomposite materials is concluded to be the best method to enhance the energy density of the dielectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whittingham MS (2008) Materials challenges facing electrical energy storage. MRS Bull 33:411–421

    Article  Google Scholar 

  2. Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  Google Scholar 

  3. Balasubramanian S (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733

    Article  Google Scholar 

  4. Dang Z (2014) Polymer nanocomposites with high permittivity. In: Nanocrystalline materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-407796-6.00009-9

  5. März M, Schletz A, Eckardt B, Egelkraut S, Rauh H (2010) Power electronics system integration for electric and hybrid vehicles. In: 6th international conference on integrated power electronics systems

    Google Scholar 

  6. Nalwa HS (1999) Capacitors past, present, and future in handbook of low and high dielectric constant materials and their applications. Academic Press, Burlington

    Google Scholar 

  7. Jow T (2015) Pulsed power capacitor development and outlook. In: Pulsed power conference IEEE

    Google Scholar 

  8. Kimura T (2014) High-power-density inverter technology for hybrid and electric vehicle applications. Hitachi Rev 63:96–102

    Google Scholar 

  9. Ribeiro PF et al (2001) Energy storage systems for advanced power applications. Proc IEEE 89:1744–1756

    Google Scholar 

  10. Tolbert LM, Member S, Peng FZ, Member S (1999) Multilevel converters for large electric drives. IEEE Trans Ind Appl 35:36–44

    Article  Google Scholar 

  11. Guo M, Hayakawa T, Kakimoto M, Goodson T (2011) Organic macromolecular high dielectric constant materials synthesis, characterization , and applications. J Phys Chem B:13419–13432

    Google Scholar 

  12. Macdougall FW, Ennis JB, Cooper RA, Bates J, Seal K (2003) High energy density pulsed power capacitors. In: IEEE 14th international pulsed power conference

    Google Scholar 

  13. Mcnab IR, Lane WB (1997) Pulsed power for electric guns. IEEE Trans Magn 33

    Google Scholar 

  14. Yang L (2019) Progress in materials science perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  Google Scholar 

  15. Riggs BC, Adireddy S, Rehm CH, Puli VS, Chrisey DB (2015) Polymer nanocomposites for energy storage applications. Mater Today Proc 2:3853–3863

    Article  Google Scholar 

  16. Mahmood A, Naeem A (2017) High-k polymer nanocomposites for energy storage applications. In: Properties and applications of polymer dielectrics

    Google Scholar 

  17. Shen Y, Zhang X, Li M, Lin Y, Nan C (2017) Polymer nanocomposite dielectrics for electrical energy storage. In: Special topic: energy storage materials 2013–2015 (2017). https://doi.org/10.1093/nsr/nww041

  18. Sulong TAT, Osman RAM, Idris MS (2016) Trends of microwave dielectric materials for antenna application. AIP Conf Proc 1756

    Google Scholar 

  19. Bansal G, Marwaha A, Singh A, Bala R, Marwaha SA (2019) Triband slotted bow-tie wideband THz antenna design using graphene for wireless applications. Optik (Stuttg) 185:1163–1171

    Google Scholar 

  20. Bansal G, Marwaha A, Singh A (2020) A graphene-based multiband antipodal Vivaldi nanoantenna for UWB applications. J Comput Electron. https://doi.org/10.1007/s10825-020-01460-2

    Article  Google Scholar 

  21. Mahbub R, Fakhrul T, Islam F (2013) Enhanced dielectric properties of tantalum oxide doped barium titanate based ceramic materials. Proc Eng 56:760–765

    Article  Google Scholar 

  22. **e L, Huang X, Huang Y, Yang K, Jiang P (2013a) Core@double-shell structured BaTiO3—polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phys Chem. https://doi.org/10.1021/jp407340n

    Article  Google Scholar 

  23. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23

    Google Scholar 

  24. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci:1421–1429 (2011). https://doi.org/10.1002/polb.22337

  25. Jia Q, Huang X, Wang G, Diao J, Jiang P (2016) MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J Phys Chem. https://doi.org/10.1021/acs.jpcc.6b02968

    Article  Google Scholar 

  26. Mao YP, Mao SY, Ye ZG, **e ZX, Zheng LS (2010) Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites. J Appl Phys 108

    Google Scholar 

  27. **a W, Yin Y, **ng J, Xu Z (2018) Results in physics the effects of double-shell organic interfaces on the dielectric and energy storage properties of the P (VDF-CTFE)/BT@HBP@PDA-Ag nanocomposite films. Res Phys 11:877–884

    Google Scholar 

  28. Nanoparticles B (2011) Improving dielectric properties of BaTiO 3/ferroelectric polymer composites by employing surface hydroxylated. ACS Appl Mater Interf:2184–2188 (2011).https://doi.org/10.1021/am200492q

  29. Rahimabady M, Mirshekarloo MS, Yao K, Lu L (2013a) Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in Poly(vinylidene fluoride-hexafluoropropylene). Phys Chem Chem Phys 15:16242–16248

    Article  Google Scholar 

  30. **e L, Huang X, Huang Y, Yang K, Jiang P (2013b) Core@double-shell structured BaTiO3-polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phys Chem C 117:22525–22537

    Article  Google Scholar 

  31. Fan Y, Huang X, Wang G, Jiang P (2015) Core-shell structured biopolymer@BaTio3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J Phys Chem C 119:27330–27339

    Article  Google Scholar 

  32. **e L, Huang X, Huang Y, Yang K, Jiang P (2013c) Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5:1747–1756

    Article  Google Scholar 

  33. Marwat MA (2019) Largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure. Compos Part A Appl Sci Manuf 121:115–122

    Article  Google Scholar 

  34. Shen Y (2015) Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Energy 18:176–186 (2015)

    Google Scholar 

  35. Chen J (2018) Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 54:288–296

    Article  Google Scholar 

  36. Chuntian C, Lei W, **nmei L (2019) K0.5Na0.5NbO3-SrTiO3/PVDF polymer composite film with low remnant polarization and high discharge energy storage density. Polymers

    Google Scholar 

  37. Song Y, Shen Y, Hu P, Bei**g T, Lin Y (2012) Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl Phys Lett:1–5 (2012). https://doi.org/10.1063/1.4760228

  38. Jia Q, Huang X, Wang G, Diao J, Jiang P (2013) MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.6b0296839

  39. Gao L, He J, Hu J, Li Y (2013) Large enhancement in polarization response and energy storage properties of poly (vinylidene fluoride) by improving the interface effect in nanocomposites. J Phys Chem C

    Google Scholar 

  40. Yang K, Huang X, Huang Y, **e L, Jiang P (2013) Polymerization : toward ferroelectric polymer nanocomposites. Chem Mater

    Google Scholar 

  41. Yu K, Niu Y, **ang F, Zhou Y, Bai Y, Wang H (2013) Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys 114:174107

    Article  Google Scholar 

  42. Yu K, Niu Y, Zhou Y, Bai Y, Wang H (2013) Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc 96:2519–2524

    Article  Google Scholar 

  43. You A, Be MAY, In I (2014) Poly (vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles. Appl Phys Lett 082904

    Google Scholar 

  44. Niu Y, Zhou Y, Wang H (2013) Poly (vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles Poly (vinylidene fluoride) polymer based nanocomposites with significantly reduced energy. Appl Phys Lett. https://doi.org/10.1063/1.4795017

    Article  Google Scholar 

  45. Hu P, Jia Z, Shen Z, Wang P, Liu X (2018) High dielectric constant and energy density induced by the tunableTiO2 interfacial buffer layer in PVDF nanocomposite contained with core—shell structured TiO2@BaTiO3 nanoparticles. Appl Surf Sci 441:824–831

    Article  Google Scholar 

  46. Rahimabady M, Mirshekarloo MS, Yao K, Lu L (2013b) Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in Poly(vinylidene fluoride-hexafluoropro-pylene). Phys Chem 15:16242–16248

    Google Scholar 

  47. Tang H, Sodano HA (2013) High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl Phys Lett 063901

    Google Scholar 

  48. Ali M (2019) Sandwich structure-assisted significantly improved discharge energy density in linear polymer nanocomposites with high thermal stability. Coll Surf A581:123802

    Google Scholar 

  49. Zhang Y (2017) Enhanced electric polarization and breakdown strength in the all-organic sandwich- structured poly (vinylidene fluoride)—based dielectric film for high energy density capacitor. APL Mater 076109

    Google Scholar 

  50. Hu P (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater 1–7. https://doi.org/10.1002/adfm.201303684

  51. **e B (2018) Ultrahigh discharged energy density in polymer nanocomposite by designing linear/ferroelectric bilayer heterostructure Bing. Nano Energy.https://doi.org/10.1016/j.nanoen.2018.10.041

  52. Zhu Y (2019) High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater 1901826:1–10

    Google Scholar 

  53. Jiang J (2019) Nano energy synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 62:220–229

    Article  Google Scholar 

  54. Feig VR, Tran H, Bao Z (2018) Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci.https://doi.org/10.1021/acscentsci.7b00595

  55. Chandar JV, Shanmugan S, Mutharasu D, Aziz AA (2016) Dielectric and UV Absorption studies of ZnO nanoparticles reinforced Poly(3-hydroxybutyrate) biocomposites for UV applications. J Optoelectron Adv M 8(3):123–128

    Google Scholar 

  56. Qazi RA (2020) Eco-friendly electronics based on nanocomposites of biopolyester reinforced with carbon nanotubes: a review. Polym Technol Mater 00:1–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljeet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, D., Sharma, T., Madhu, C. (2021). Optimal Strategy for Obtaining Excellent Energy Storage Density in Polymer Nanocomposite Materials. In: Dave, M., Garg, R., Dua, M., Hussien, J. (eds) Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-7533-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7533-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7532-7

  • Online ISBN: 978-981-15-7533-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation