Role and Prospects of Polymer-Based Nanomaterials in the Dielectric World

  • Chapter
  • First Online:
Emerging Nanodielectric Materials for Energy Storage

Part of the book series: Nanostructure Science and Technology ((NST))

  • 197 Accesses

Abstract

The development of reliable energy storage systems is the best strategy to resolve the global crisis of increased energy consumption in this modern high-tech world and exhaustion of fossil fuels for energy production. Electrostatic capacitors are one of the extensively used energy storage systems by the engineers and researchers among other such devices like supercapacitors and batteries due to its unique characteristics of superior charge density, ultrafast charge and discharge, high stability, and long-life time. These unique features made them suitable for distributed power systems, microelectronic circuits, electric vehicles, etc. But these electrostatic capacitors have the demerits of low energy density. Therefore, the main objective of researchers is now to achieve high energy density and energy storage efficiency along with the high-power density. The only possible way to attain the high energy density of the electrostatic capacitor is to tailor the features of dielectric materials. Both the ceramics and polymers were used individually in the dielectric layer of the electrostatic capacitors, while the both the individuals have some pros and cons. So, materials scientist combines both the ceramics and polymer to obtain the pro qualities of polymer like high breakdown strength and flexibility, and high dielectric constant of ceramics. Recently, ceramics in nanoform are chosen as the filler materials to the polymer matrix in the trend of device miniaturization. So, in this chapter, we will discuss about the various attempts made to design the polymer-ceramic nanocomposites to obtain the high dielectric constant and hence the energy density of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghosh SK, Mandal D (2017) Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for noninvasive physiological signal monitoring. Appl Phys Lett 110:123701

    Article  ADS  Google Scholar 

  2. Rahman W, Ghosh SK, Middya TR, Mandal D (2017) Highly durable piezo-electric energy harvester by a super toughened and flexible nanocomposite: effect of laponite nano-clay in poly(vinylidene fluoride). Mater. Res. Express 4:095305

    Article  ADS  Google Scholar 

  3. Karan SK, Maiti S, Agrawal AK, Das AK, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra AK, Kim JK, Khatua BB (2019) Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multienergy harvester with remarkable power density. Nano Energy 59:169–183

    Article  Google Scholar 

  4. Ding R, Zhange X, Chen G, Wang H, Kishor R, **ao J, Gao F, Zeng K, Chen X, Sun XW, Zheng Y (2017) High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy 37:126–135

    Article  Google Scholar 

  5. Ryu H, Yoon HJ, Kim SW (2019) Hybrid energy harvesters: toward sustainable energy harvesting. Adv Mater 1:1802898

    Article  Google Scholar 

  6. Vatansever D, Hadimani RL, Shah T, Siores E (2011) An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater Struct 20:055019

    Article  ADS  Google Scholar 

  7. Karan SK, Maiti S, Agrawal DAK, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra AK, Kim JK, Khatua BB (2019) Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multienergy harvester with remarkable power density. Nano Energy 59:169–183

    Article  Google Scholar 

  8. Liang Q, Yan X, Gu Y, Zhang K, Liang M, Lu S, Zheng X, Zhang Y (2015) Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci Rep 5:1–7

    Google Scholar 

  9. Alam MM, Sultana A, Mandal D (2018) Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl Energy Mater 1:3103–3112

    Article  Google Scholar 

  10. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  Google Scholar 

  11. Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 27:778–788

    Google Scholar 

  12. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  13. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250

    Article  Google Scholar 

  14. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  ADS  Google Scholar 

  15. Yang M, Li Q, Zhang X, Bilotti E, Zhang C, Xu C, Gan S, Dang ZM (2022) Surface engineering of 2D dielectric polymer films for scalable production of high-energy-density films. Prog Mater Sci 128:100968

    Article  Google Scholar 

  16. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  ADS  Google Scholar 

  17. Sun Z, Ma C, Wang X, Liu M, Lu L, Wu M, Lou X, Wang H, Jia C (2017) Large energy density, excellent thermal stability, and high cycling endurance of lead-free BaZr0.2Ti0.8O3 film capacitors. ACS Appl Mater Interfaces 9:17096–17101

    Article  Google Scholar 

  18. Zhou M, Liang R, Zhou Z, Dong X (2018) Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C6:8528–8537

    Google Scholar 

  19. Hu J, Zhang S, Tang B (2021) Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning. Energy Storage Mater 37:530–555

    Article  Google Scholar 

  20. Cheng R, Wang Y, Men R, Lei Z, Song J, Li Y, Guo M (2022) High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. iScience25, 104837

    Google Scholar 

  21. Gao F, Zhang K, Guo Y, Xu J, Szafran M (2021) (Ba, Sr)TiO3/polymer dielectric composites–progress and perspective. Prog Mater Sci 121:100813

    Article  Google Scholar 

  22. Huang X, Sun B, Zhu Y, Li S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187–225

    Article  Google Scholar 

  23. Singh M, ApataI E, Samant S, Wu W, Tawade BV, Pradhan N, Raghavan D, Karima A (2022) Nanoscale strategies to enhance the energy storage capacity of polymeric dielectric capacitors: review of recent advances. Poly Rev 62:211–260

    Google Scholar 

  24. Zhang L, Liu Z, Lu X, Yang G, Zhang X, Cheng ZY (2016) Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 26:550–557

    Article  Google Scholar 

  25. Wanga H, **e H, Wang S, Gao Z, Li C, Hu G, **ong C (2018) Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos A 108:62–68

    Article  Google Scholar 

  26. Zh J-W, Zheng M-S, Fan B-H, Dang Z-M (2021) Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89:106438

    Article  Google Scholar 

  27. Sun L, Shi Z, Wang H, Zhang K, Dastan D, Sun K, Fan R (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3 /P(VDF-HFP) composites. J Mater Chem A 8:5750–5757

    Google Scholar 

  28. Wang Y, Yao MG, Ma R, Yuan QB, Yang DS, Cui B, Ma CR, Liu M, Hu DW (2020) Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J Mater Chem A 8:884–917

    Article  Google Scholar 

  29. Bouharras FE, Raihane M, Ameduri B (2020) Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: synthesis, dielectric properties and applications. Prog Mater Sci 113:100670

    Article  Google Scholar 

  30. Feng Y, Zhou YH, Zhang TD, Zhang CH, Zhang YQ, Zhang Y, Chen QG, Chi QG (2020) Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater 25:180–192

    Article  Google Scholar 

  31. Guo MF, Jiang JY, Shen ZH, Lin YH, Nan CW, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67

    Article  Google Scholar 

  32. Marwat MA, **e B, Zhu YW, Fan PY, Ma WG, Liu HM, Ashtar M, **ao JZ, Salamon D, Samart C, Zhang HB (2019) Largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure. Compos Part A: Appl S 121:115–122

    Article  Google Scholar 

  33. Lu X, Zou XW, Shen JL, Zhang L, ** L, Cheng ZY (2020) High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 70:104551

    Article  Google Scholar 

  34. Zhou Y, Wang Q (2020) Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 127:240902

    Article  ADS  Google Scholar 

  35. Cheng S, Zhou Y, Hu J, He J, Li Q (2020) Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics. IEEE T Dielect El In 27:498–503

    Article  Google Scholar 

  36. Li Q, Han K, Gadinski MR, Zhang G, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26:6244–6249

    Article  Google Scholar 

  37. Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13:1373–1379

    Article  ADS  Google Scholar 

  38. Huang X, Jiang P (2015) Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27:546–554

    Article  Google Scholar 

  39. Hu P, Shen Y, Guan YH, Zhang XH, Lin YH, Zhang QM, Nan CW (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength energy density. Adv Funct Mater 24:3172–3178

    Article  Google Scholar 

  40. Zhang G, Li Q, Allahyarov E, Li Y, Zhu L (2021) Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl Mater Interfaces 13:37939–37960

    Article  Google Scholar 

  41. JiangY ZhouM, ShenZ ZhangX, PanH LinYH (2021) Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater 9:020905

    Article  ADS  Google Scholar 

  42. Shanmugasundram HPPV, Jayamani E, Soon KH (2022) A comprehensive review on dielectric composites: classification of dielectric composites. Renew Sustain Energy Rev 157:112075

    Article  Google Scholar 

  43. StarkKH GartonCG (1955) Electric strength of irradiated polythene. Nature 176:1225–2126

    Article  ADS  Google Scholar 

  44. Hu J, Zhang S, Tang B (2021) 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Mater 34:260–281

    Google Scholar 

  45. **ong X, Zhang Q, Zhang Z, Yang H, Tong J, Wen J (2021) Superior energy storage performance of PVDF-based composites induced by a novel nanotube structural BST@SiO2 filler. Composites: Part A 145:106375

    Google Scholar 

  46. Jian G, Jiao Y, Meng Q, Wei Z, Zhang J, Yan C, Moon K, Wong C (2020) Enhanced dielectric constant and energy density in a BaTiO3/polymer-matrix composite sponge. Commun Mater 1:1–12

    Article  Google Scholar 

  47. Ren L, Yang L, Zhang S, Li H, Zhou Y, Ai D, **e Z, Zhao X, Peng Z, Liao R, Wang Q (2021) Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos Sci Technol 201:108528

    Article  Google Scholar 

  48. Dang Z, Yuan J, Zha J, Zhou T, Li S, Hu G (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723

    Article  Google Scholar 

  49. Yang W, Yu S, Sun R, Du R (2011) Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mat 59:5593–5602

    Google Scholar 

  50. Nelsont SO, You T-S (1990) Relationships between microwave permittivities of solid and pulverized Plastics. J Phys D: Appl Phys 23:346

    Article  ADS  Google Scholar 

  51. Thomas S, Deepu VN, Mohanan P, Sebastian MT (2008) Effect of filler content on the dielectric properties of PTFE/ZnAl2O4–TiO2 composites. J Am Ceram Soc 91:1971–1975

    Article  Google Scholar 

  52. Dash S, Choudhary RNP, Kumar A, Goswami MN (2019) Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites. J Mater Sci Mater Electron 30:19309–19318

    Article  Google Scholar 

  53. Hossain ME, Liu SY, O’Brien S, Li J (2014) Modeling of high-k dielectric nanocomposites. Acta Mech 225:1197–1209

    Article  Google Scholar 

  54. Zhang C, Chi Q, Dong J, Cui Y, Wang X, Liu L, Lei Q (2016) Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci Rep 6:1–9

    Google Scholar 

  55. Yamada T, Ueda T, Kitayama T (1982) Piezoelectricity of a high-content lead zirconate titanate polymer composite. J Appl Phys 53:4328–4332

    Article  ADS  Google Scholar 

  56. Yu K, Niu Y, Zhou Y, Bai Y, Wang H (2013) Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc 96:2519–2524

    Article  Google Scholar 

  57. JayasundereN SV (1993) Dielectric constant for binary piezoelectric 0–3 composites. J Appl Phys 73:2462–2466

    Article  ADS  Google Scholar 

  58. Hu H, Zhang F, Luo S, Chang W, Yue J, Wang CH (2020) Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 74:104844

    Google Scholar 

  59. Chen C, **e Y, Liu J, Li J, Wei X, Zhang Z (2020) Enhanced energy storage capability of P(VDF-HFP) nanodielectrics by HfO2 passivation layer: preparation, performance and simulation. Compos Sci Technol 188:107968

    Article  Google Scholar 

  60. Tabhane GH, Giripunje SM, Kondawar SB (2021) Fabrication and dielectric performance of RGO-PANI reinforced PVDF/BaTiO3 composite for energy harvesting. Synth Met 279:116845

    Article  Google Scholar 

  61. Honga W, Pitike KC (2015) Modeling breakdown-resistant composite dielectrics. Procedia IUTAM 12:73–82

    Article  Google Scholar 

  62. Sen ZH, Wang JJ, Lin Y, Nan CW, Chen LQ, Shen Y (2017) High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv Mater 30:1704380

    Article  Google Scholar 

  63. Niemeyer LP, Wiesmann HJ (1984) Fractal dimension of dielectric breakdown. Phys Rev Lett 52:1033

    Article  ADS  MathSciNet  Google Scholar 

  64. Yue D, Feng Y, Liu XX, Yin J-H, Zhang W-C, Guo H, Su B, Lei Q-Q (2022) Prediction of energy storage performance in polymer composites using high-throughput stochastic breakdown simulation and machine learning. Adv Sci 9:2105773

    Google Scholar 

  65. Wanga Z, Nelson JK, Hillborg H, Zhao S, Schadler LS (2013) Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models. Compos Sci Technol 76:29–36

    Google Scholar 

  66. BaiH GeG, HeX ShenB, ZhaiJ PanH (2020) Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@BN nanofibers. Compos Sci Technol 195:108209

    Article  Google Scholar 

  67. Zhang T, Sun Q, Kang F, Wang Z, Xue R, Wang J, Zhang L (2022) Sandwich-structured polymer dielectric composite films for improving breakdown strength and energy density at high temperature. Compos Sci Technol 227:109596

    Article  Google Scholar 

  68. Xu H, **e C, Gou B, Wang R, Zhou J, Li L (2022) Core-double-shell structured BT@TiO2@PDA and oriented BNNSs doped epoxy nanocomposites with field-dependent nonlinear electrical properties and enhancing breakdown strength. Compos Sci Technol 230:109777

    Article  Google Scholar 

  69. Huang X, Sun B, Zhua Y, Lib S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mate Sci 100:187–225

    Google Scholar 

  70. Rogti F, Ferhat M (2014) Maxwell Wagner polarization and interfacial charge at the multilayers of thermoplastic polymers. J Electrostat 72:91–97

    Article  Google Scholar 

  71. Danikas MG (2010) On two nanocomposite models: differences, similarities and interpretational possibilities regarding Tsagaropoulos’ model and Tanaka’s model. J Electr Eng 61:241

    Google Scholar 

  72. Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D: Appl Phys 38:202

    Article  ADS  Google Scholar 

  73. Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  Google Scholar 

  74. Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41:8008–8013

    Article  Google Scholar 

  75. Thomas P, Varughese KT, Dwarakanath K, Varma KBR (2010) Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol 70:539–545

    Article  Google Scholar 

  76. Fu J, Hou Y, Zheng M, Wei Q, Zhu M, Yan H (2015) Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. Appl Mater Interfaces 44:24480–24491

    Article  Google Scholar 

  77. Kum-onsa P, Thongbai P (2020) Improved dielectric properties of poly(vinylidene fluoride) composites incorporating Na1/2Y1/2Cu3Ti4O12 particles. Mater Today Commun 25:101654

    Article  Google Scholar 

  78. Santos IA, Rosso JM, Cotica LF, Bonadio TGM, Freitas VF, Guo R, Bhalla AS (2016) Dielectric and structural features of the environmentally friendly leadfree PVDF/Ba0.3Na0.7Ti0.3Nb0.7O3 0–3 composite. Curr Appl Phys 16:1468–1472

    Article  ADS  Google Scholar 

  79. Behera C, Choudhary RNP, Das PR (2017) Development of multiferroic polymer nanocomposite from PVDF and (Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3. J Mater Sci: Mater Electron 28:2586–2597

    Google Scholar 

  80. Ji SH, Cho JH, Jeong YH, Paik JH, Yun JD, Yun JS (2016) Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications. Sensors and Actuators A 247:316–322

    Article  Google Scholar 

  81. **e B, Wang T, Cai J, Zheng Q, Liu Z, Guo K, Mao P, Zhang H, Jiang S (2022) High energy density of ferroelectric polymer nanocomposites utilizing PZT@SiO2nanocubes with morphotropic phase boundary. J Chem Eng 434:134659

    Google Scholar 

  82. **e Z, Liu D, **ao Y, Wang K, Zhang Q, Wu K, Fu Q (2022) The effect of filler permittivity on the dielectric properties of polymer-based composites. Compos Sci Technol 222:109342

    Article  Google Scholar 

  83. Gonçalves R, Martins PM, Caparrós C, Martins P, Benelmekki M, Botelho G, Lanceros-Méndez S, Lasheras A, Gutierrez J, Barandiarán JM (2013) Nucleation of the electroactive β-phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. J Non-Cryst Solids 361:93–99

    Google Scholar 

  84. Amoresi RAC, Felix AA, Botero ER, Domingues NLC, Falcão EA, Zaghet MA, Rinaldi AW (2015) Crystallinity, morphology and high dielectric permittivity of NiOnanosheets filling Poly(vinylidene fluoride). Ceram Int 41:14733–14739

    Article  Google Scholar 

  85. XuHP DangZM (2007) Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers. Chem Phy Lett 438:196–202

    Article  ADS  Google Scholar 

  86. Xu HP, **eHQ, Yang DD, Wu YH, Wang JR (2011) Novel dielectric behaviors in PVDF-based semiconductor composites. J Appl Polym Sci 122:3466–3473

    Google Scholar 

  87. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  Google Scholar 

  88. Wang L, Dang ZM (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903

    Article  ADS  Google Scholar 

  89. Yousefi LX, Zheng Q, Shen X, Pothnis JR, Jia J, Zussman E, Kim JK (2013) Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites Nariman. Carbon 59:406–417

    Article  Google Scholar 

  90. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  ADS  Google Scholar 

  91. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim JK (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717

    Article  Google Scholar 

  92. QiL LI, ChenS SD, ExarhosG J (2005) High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv Mat 17:1777–1781

    Article  Google Scholar 

  93. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487

    Article  Google Scholar 

  94. Guo D, Cai K, Deng P, Si G, Sun L, Chen F, Ning H, ** L, Ma J (2020) Structure tailorable triple-phase and pure double-polar-phase flexible IF-WS2@poly(vinylidene fluoride) nanocomposites with enhanced electrical and mechanical properties. J Mater 6:563–572

    Google Scholar 

  95. Jia Q, Huang X, Wang G, Diao J, Jiang P (2016) MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J Phys Chem C 120:10206–10214

    Article  Google Scholar 

  96. Wu W, Huang X, Li S, Jiang P, Toshikatsu T (2012) Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J Phys Chem C 116:24887–24895

    Article  Google Scholar 

  97. Ji W, Deng H, Sun C, Fu Q (2019) Nickel hydroxide as novel filler for high energy density dielectric polymer composites. Compos Sci Technol 172:117–124

    Article  Google Scholar 

  98. Wen F, Zhu C, Li L, Zhou B, Zhang L, Han C, Li W, Yue Z, Wu W, Wang G, Zhang S (2022) Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. J Chem Eng 430:132676

    Google Scholar 

  99. **g L, Li W, Gao C, Li M, Fei W (2022) Enabling high energy storage performance in PVDF-based nanocomposites filled with high-entropy oxide nanofiber. Compos Sci Technol 230:109783

    Article  Google Scholar 

  100. Ji W, Deng H, Fu Q (2017) Heterogeneous filler distribution in polymeric capacitor films: an efficient route to improve their dielectric properties. Compos Sci Technol 151:131–138

    Article  Google Scholar 

  101. Zeng J, Yan J, Li BW, Zhang X (2022) Improved breakdown strength and energy storage performances of PEI-based nanocomposite with core-shell structured PI@BaTiO3 nanofillers. Ceram Int 48:20526

    Article  Google Scholar 

  102. Hu J, Liu Y, Zhang S, Tang B (2022) Novel designed core–shell nanofibers constituted by single element-doped BaTiO3 for high-energy–density polymer nanocomposites. J Chem Eng 428:131046

    Google Scholar 

  103. Li H, Wang L, Zhu Y, Jiang P, Huang X (2021) Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites. Chin Chem Lett 32:2229–2232

    Article  Google Scholar 

  104. Pan X, Wang M, Qi X, Zhang N, Huang T, Yang J, Wang Y (2020) Fabrication of sandwich-structured PPy/MoS2/PPynanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Compos A 137:106032

    Article  Google Scholar 

  105. Li Z, Liu F, Li H, Ren L, Dong L, **ong C, Wang Q (2019) Largely enhanced energy storage performance of sandwich-structured polymer nanocomposites with synergistic inorganic nanowires. Ceram Int 45:8216–8221

    Article  Google Scholar 

  106. Luo W, Xu L, Zhang G, Zhou L, Li H (2021) Sandwich-structured polymer nanocomposites with Ba0â‹…6Sr0â‹…4TiO3 nanofibers networks as mediate layer inducing enhanced energy storage density. Compos Sci Technol 204:108628

    Article  Google Scholar 

  107. Wang Y, Hou Y, Deng Y (2017) Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites. Compos Sci Technol 145:71–77

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Science and Higher Education of the Russian Federation: State task in the field of scientific activity, scientific project No. 0852-2020-0032 (BAZ0110/20-3-07IF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushrisangita Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, S., Yadav, A., Andryushin, K.P., Reznichenko, L.A. (2024). Role and Prospects of Polymer-Based Nanomaterials in the Dielectric World. In: Moharana, S., Gregory, D.H., Mahaling, R.N. (eds) Emerging Nanodielectric Materials for Energy Storage. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-40938-7_4

Download citation

Publish with us

Policies and ethics

Navigation