Recent Trends and Advances in the Biodegradation of Conventional Plastics

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Abstract

With the increasing use of fossil-based plastics worldwide, the need for proper disposal of plastic waste has become a menace for develo** countries as well as the developed world. The overuse of plastic and its improper disposal system in many countries of the world has led to severe environmental concerns. Disposal system and methods of plastic through various chemical and physical processes are very expensive which also produces organic pollutants, resulting in environmental deterioration. Recent trends suggest the biodegradation of conventional plastics like polyethylene terephthalate (PET), polyethylene (PE), and polystyrene (PS) under different environments like using enzymes and microbes for disintegration and assimilation, respectively, as a viable bioremediation. Among enzymes, lipases, cutinases, and PETase has been identified as potential fossil-based plastic degrader as viable solution. This chapter aims to provide a broader aspect of conventional plastic biodegradation and its degradation mechanisms, providing an overview on viable bioremediation of plastic waste. This chapter also discusses the current status of the techniques used for degradation, characterizing degraded plastics and factors affecting their biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250. https://doi.org/10.1080/07388550500346359

    Article  CAS  Google Scholar 

  2. Valapa RB, Pugazhenthi G, Katiyar V (2016) Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. Int J Biol Macromol 89:70–80. https://doi.org/10.1016/j.ijbiomac.2016.04.040

    Article  CAS  Google Scholar 

  3. Dhar P, Bhasney SM, Kumar A, Katiyar V (2016) Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly (lactic acid) bionanocomposites films: a comprehensive study. Polymer (UK) 101:75–92. https://doi.org/10.1016/j.polymer.2016.08.028

    Article  CAS  Google Scholar 

  4. Gupta A, Pal AK, Woo EM, Katiyar V (2018) Effects of amphiphilic chitosan on stereocomplexation and properties of poly(lactic acid) nano-biocomposite. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-22281-1

    Article  CAS  Google Scholar 

  5. Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films with improved thermal. Mech Gas Barrier Prop. https://doi.org/10.1021/acs.biomac.6b00619

    Article  Google Scholar 

  6. Pradhan R, Misra M, Erickson L, Mohanty A (2010) Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor. Bioresour Technol 101:8489–8491. https://doi.org/10.1016/j.biortech.2010.06.053

    Article  CAS  Google Scholar 

  7. Kalita NK, Nagar MK, Mudenur C et al (2019) Biodegradation of modified Poly(lactic acid) based biocomposite films under thermophilic composting conditions. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.02.021

    Article  Google Scholar 

  8. Gupta A, Mulchandani N, Shah M et al (2018) Functionalized chitosan mediated stereocomplexation of poly(lactic acid): influence on crystallization, oxygen permeability, wettability and biocompatibility behavior. Polymer (UK) 142:196–208. https://doi.org/10.1016/j.polymer.2017.12.064

    Article  CAS  Google Scholar 

  9. Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10:1308–1322. https://doi.org/10.1111/1751-7915.12710

    Article  CAS  Google Scholar 

  10. Vimal Kumar R, Kanna GR, Elumalai S (2017) Biodegradation of polyethylene by green photosynthetic microalgae. J Bioremediat Biodegrad 8:1–8. https://doi.org/10.4172/2155-6199.1000381

    Article  CAS  Google Scholar 

  11. Valapa RB, Pugazhenthi G, Katiyar V (2016a) Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. Int J Biol Macromol 89:70–80. https://doi.org/10.1016/j.ijbiomac.2016.04.040

  12. Pradhan R, Reddy M, Diebel W et al (2010b) Comparative compostability and biodegradation studies of various components of green composites and their blends in simulated aerobic composting bioreactor. Int J Plast Technol 14. https://doi.org/10.1007/s12588-010-0009-z

  13. Yoshida S, Hiraga K, Takanaha T et al (2016) A bacterium that degrades and assimilates poly(ethyleneterephthalate). Science (80)351:1196–1199. https://doi.org/10.1126/science.aad6359

  14. Kitadokoro K, Thumarat U, Nakamura R et al (2012) Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 97:771–775. https://doi.org/10.1016/j.polymdegradstab.2012.02.003

    Article  CAS  Google Scholar 

  15. Gnanavel G, Mohana Jeya Valli VP, Thirumarimurugan Kannadasan T (2012) Degradation of plastics using microorganisms. Int J Pharm Chem Sci 1:1040–1043

    Google Scholar 

  16. Tripathi N, Katiyar V (2017) Poly (lactic acid)/modified gum arabic based bionanocomposite films: thermal degradation kinetics. https://doi.org/10.1002/pen

  17. Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Technol 6:952–961. https://doi.org/10.5897/AJMR2016.8402

    Article  CAS  Google Scholar 

  18. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

    Article  CAS  Google Scholar 

  19. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  Google Scholar 

  20. Kale (2015) Microbial degradation of plastics: a review. J Biochem Technol 6:952–961. https://doi.org/10.1504/ijep.2008.016895

  21. Yang J, Yang Y, Wu WM et al (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. https://doi.org/10.1021/es504038a

    Article  CAS  Google Scholar 

  22. Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environ Sci Technol 49:12087–12093. https://doi.org/10.1021/acs.est.5b02663

    Article  CAS  Google Scholar 

  23. Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends Anal Chem 29:84–100. https://doi.org/10.1016/j.trac.2009.09.005

    Article  CAS  Google Scholar 

  24. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Int Biodeterior Biodegrad 52:69–91

    Article  CAS  Google Scholar 

  25. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  Google Scholar 

  26. Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  Google Scholar 

  27. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  28. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426. https://doi.org/10.1016/j.copbio.2011.01.013

    Article  CAS  Google Scholar 

  29. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21:575–579. https://doi.org/10.1007/s10924-012-0456-z

    Article  CAS  Google Scholar 

  30. Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta Gen Subj 1620:1–7. https://doi.org/10.1016/S0304-4165(02)00510-X

    Article  CAS  Google Scholar 

  31. Thumarat U, Nakamura R, Kawabata T et al (2012) Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl Microbiol Biotechnol 95:419–430. https://doi.org/10.1007/s00253-011-3781-6

    Article  CAS  Google Scholar 

  32. Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegrad 88:83–90. https://doi.org/10.1016/j.ibiod.2013.12.014

    Article  CAS  Google Scholar 

  33. Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5:1–18. https://doi.org/10.3390/polym5010001

    Article  CAS  Google Scholar 

  34. Cregut M, Bedas M, Durand MJ, Thouand G (2013) New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol Adv 31:1634–3647. https://doi.org/10.1016/j.biotechadv.2013.08.011

    Article  CAS  Google Scholar 

  35. Bonhomme S, Cuer A, Delort AM et al (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452. https://doi.org/10.1016/S0141-3910(03)00129-0

    Article  CAS  Google Scholar 

  36. Hakkarainen M, Karlsson S, Albertsson A (2000) Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer (Guildf) 41:2331–2338

    Article  CAS  Google Scholar 

  37. Arkatkar A, Juwarkar AA, Bhaduri S et al (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536. https://doi.org/10.1016/j.ibiod.2010.06.002

    Article  CAS  Google Scholar 

  38. Arutchelvi J, Sudhakar M, Arkatkar A et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  39. Mueller RJ (2006) Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128. https://doi.org/10.1016/j.procbio.2006.05.018

    Article  CAS  Google Scholar 

  40. Loredo-Treviño A, Gutiérrez-Sánchez G, Rodríguez-Herrera R, Aguilar CN (2012) Microbial enzymes involved in polyurethane biodegradation: a review. J Polym Environ 20:258–265. https://doi.org/10.1007/s10924-011-0390-5

    Article  CAS  Google Scholar 

  41. Espino-Rammer L, Ribitsch D, Przylucka A et al (2013) Two novel class ii hydrophobins from Trichoderma spp. Stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 79:4230–4238. https://doi.org/10.1128/AEM.01132-13

    Article  CAS  Google Scholar 

  42. Ribitsch D, Acero EH, Przylucka A et al (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81:3586–3592. https://doi.org/10.1128/AEM.04111-14

    Article  CAS  Google Scholar 

  43. Sammond DW, Yarbrough JM, Mansfield E et al (2014) Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. J Biol Chem 289:20960–20969. https://doi.org/10.1074/jbc.M114.573642

    Article  CAS  Google Scholar 

  44. Gamerith C, Herrero Acero E, Pellis A et al (2016) Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polym Degrad Stab 132:69–77. https://doi.org/10.1016/j.polymdegradstab.2016.02.025

    Article  CAS  Google Scholar 

  45. Sarkar S, Singha PK, Dey S et al (2006) Synthesis, characterization, and cytotoxicity analysis of a biodegradable polyurethane. Mater Manuf Process 21:291–296. https://doi.org/10.1080/10426910500464727

    Article  CAS  Google Scholar 

  46. Manzur A, Cuamatzi F, Favela E (1997) Effect of the growth of Phanerochaete chrysosporium in a blend of low density polyethylene and sugar cane bagasse. J Appl Polym Sci 66:105–111. https://doi.org/10.1002/(SICI)1097-4628(19971003)66:1%3c105:AID-APP12%3e3.3.CO;2-3

    Article  CAS  Google Scholar 

  47. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87. https://doi.org/10.1016/0141-3910(87)90084-X

    Article  CAS  Google Scholar 

  48. Koutny M, Sancelme M, Dabin C et al (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503. https://doi.org/10.1016/j.polymdegradstab.2005.10.007

    Article  CAS  Google Scholar 

  49. Li YF, Wu CJ, Sheng YJ, Tsao HK (2015) Facile manipulation of receding contact angles of a substrate by roughening and fluorination. Appl Surf Sci 355:127–132. https://doi.org/10.1016/j.apsusc.2015.07.078

    Article  CAS  Google Scholar 

  50. Fontanella S, Bonhomme S, Koutny M et al (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021. https://doi.org/10.1016/j.polymdegradstab.2010.03.009

    Article  CAS  Google Scholar 

  51. Kumar Sen S, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): A review. J Environ Chem Eng 3:462–473. https://doi.org/10.1016/j.jece.2015.01.003

    Article  CAS  Google Scholar 

  52. Ojha N, Pradhan N, Singh S et al (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:1–13. https://doi.org/10.1038/srep39515

    Article  CAS  Google Scholar 

  53. Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210. https://doi.org/10.1016/j.ibiod.2012.03.001

    Article  CAS  Google Scholar 

  54. Roy PK, Titus S, Surekha P et al (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922. https://doi.org/10.1016/j.polymdegradstab.2008.07.016

    Article  CAS  Google Scholar 

  55. Esmaeili A, Pourbabaee AA, Alikhani HA et al (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One 8. https://doi.org/10.1371/journal.pone.0071720

  56. Mukherjee S, Roy Chowdhuri U, Kundu PP (2016) Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Adv 6:2982–2992. https://doi.org/10.1039/c5ra25128a

    Article  CAS  Google Scholar 

  57. Seymour RB, Kauffman GB (1992) Polyurethanes: a class of modern versatile materials. J Chem Educ 69:909. https://doi.org/10.1021/ed069p909

    Article  CAS  Google Scholar 

  58. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N et al (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140. https://doi.org/10.1007/s002530051373

    Article  CAS  Google Scholar 

  59. Howard G (2011) Microbial biodegradation of polyurethane. Recent Dev Polym Recycl 661:215–238

    Google Scholar 

  60. Stern RV, Howard GT (2000) The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185:163–168. https://doi.org/10.1016/S0378-1097(00)00094-X

    Article  CAS  Google Scholar 

  61. Kawai F, Oda M, Tamashiro T et al (2014) A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98:10053–10064. https://doi.org/10.1007/s00253-014-5860-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, N.K., Kalamdhad, A., Katiyar, V. (2020). Recent Trends and Advances in the Biodegradation of Conventional Plastics. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_17

Download citation

Publish with us

Policies and ethics

Navigation