Log in

Microbial Enzymes Involved in Polyurethane Biodegradation: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastics are present in a lot of aspects of everyday life. They are very versatile and resistant to microbial attack. Polyurethanes are used in several industries and are divided in polyester and polyether polyurethanes and there are different types among them. Despite their microbial resistance, they are susceptible to the attack of fungi and bacteria but the mechanism to elucidate its biodegradation are unknown. There are reports from bacteria and fungi that are capable of degrading polyurethane but the studies about the enzymes that attack the plastic are focused on bacterial enzymes only. The enzymes reported are of type esterase and protease mainly since these enzymes are very unspecific and can recognize some regions in the polyurethane molecule and hydrolyze it. Fungal enzymes have been studied prior the 1990s decade but recently, some authors report the use of filamentous fungi to degrade polyurethane and also report some characteristics of the enzymes involved in it. This review approaches polyurethane biodegradation by focusing on the enzymes reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246

  2. Rowe L, Howard GT (2002) Int Biodeter Biodegr 50:33–40

    Article  CAS  Google Scholar 

  3. Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (1998) Ferment Bioeng 86:339–340

    Article  CAS  Google Scholar 

  4. Ruiz C, Main T, Hilliard NP, Howard GT (1999) Int Biodeter Biodegr 43:43–47

    Article  CAS  Google Scholar 

  5. Urgun-Demirtas M, Singh D, Pagilla K (2007) Polym Degrad Stabil 92:1599–1610

    Article  CAS  Google Scholar 

  6. Howard GT, Ruiz C, Hilliard NP (1999) Int Biodeter Biodegr 43:7–12

    Article  CAS  Google Scholar 

  7. Oceguera-Cervantes A, Carrillo-García A, López N, Bolaños-Núñez S, Cruz-Gómez MJ, Wacher C, Loza-Tavera H (2007) Appl Environ Microbiol 6214–6223

  8. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res 6:278–279

    CAS  Google Scholar 

  9. Cangemi JM, dos Santos AM, Neto SC, Chierice GO (2008) Polímeros. Ciência Tecnol 18:201–206

    CAS  Google Scholar 

  10. Barrat SR, Ennos AR, Greenhalgh M, Robson GD, Handle PS (2003) J Appl Microbiol 95:78–85

    Article  Google Scholar 

  11. Howard GT, Blake RC (1998) Int Biodeter Biodegr 42:213–220

    Article  CAS  Google Scholar 

  12. Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sik A K (2010) Biodegradation

  13. Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Appl Environ Microbiol 73:5817–5824

    Article  CAS  Google Scholar 

  14. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Appl Microbiol Biotechnol 51:134–140

    Article  CAS  Google Scholar 

  15. Gautam R, Bassi AS, Yanfun EK, Cullen E (2007) Int Biotedeter Biodegr 60:245–249

    Article  CAS  Google Scholar 

  16. Darby RT, Kaplan AM (1968) Appl Microbiol 16(6):900–905

    CAS  Google Scholar 

  17. Ibrahim NI, Maraqa A, Hameed KM, Saadoun IM, Maswadeh HM, Nakajima-Kambe T (2009) Adv Environ Biol 2:162–170

    Google Scholar 

  18. Matsumiya Y, Murata N, Tanabe E, Kubota K, Kubo M (2010) J Appl Microbiol 108:1946–1953

    CAS  Google Scholar 

  19. Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Appl Environ Microb 64:62–67

    CAS  Google Scholar 

  20. Howard GT, Hilliard NP (1999) Int Biodeter Biodegr 43:23–30

    Article  CAS  Google Scholar 

  21. Allen A, Hilliard N, Howard GT (1999) Int Biodeterior Biodegrad 43:37–41

    Article  CAS  Google Scholar 

  22. Vega RE, Main T, Howard GT (1999) Int Biodeterior Biodegrad 43:49–55

    Article  CAS  Google Scholar 

  23. Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) FEMS Microbiol Lett 129:39–42

    Article  CAS  Google Scholar 

  24. Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Int Biodeter Biodegr 33:103–113

    Article  Google Scholar 

  25. Hincapie-Llanos GA, Ramírez-Cardona ME. Revista Investig Aplicadas

  26. Labow RS, Meek E, Matheson LA, Santerre JP (2002) Biomaterials 23:3969–3975

    Article  CAS  Google Scholar 

  27. Matheson LA, Santerre JP, Labow RS (2004) J Cel Physiol 199:8–19

    Article  CAS  Google Scholar 

  28. Tang YW, Labow RS, Santerre JP (2001) J Biomed Mater Res 56:516–528

    Article  CAS  Google Scholar 

  29. Tang YW, Labow RS, Santerre JP (2001) J Biomed Mater Res 57:597–611

    Article  CAS  Google Scholar 

  30. Kay MJ, McCabe RW, Morton LHG (1993) Int Biodeter Biodegr 31:209–255

    Article  CAS  Google Scholar 

  31. Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T (1997) J Ferment Bioeng 83:456–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R. et al. Microbial Enzymes Involved in Polyurethane Biodegradation: A Review. J Polym Environ 20, 258–265 (2012). https://doi.org/10.1007/s10924-011-0390-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0390-5

Keywords

Navigation