Lactobacillus in the Dairy Industry: From Natural Diversity to Biopreservation Resources

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 1))

Abstract

Biopreservation, defined as the extension of shelf life and enhanced safety of foods by the use of natural or controlled microbiota and/or antimicrobial compounds, is an innocuous and ecological approach to the problem of food preservation and has gained increasing attention in recent years. Fermentation of food by lactic acid bacteria (LAB) is one of the oldest forms of biopreservation practiced by mankind, not only to enhance the hygienic quality but also to minimize the impact of the nutritional and organoleptic properties of perishable food products. Lactobacillus spp. are Gram-positive rod bacteria belonging to the LAB group. Their phenotypic traits, such as homo-/heterofermentation abilities, play a crucial role in souring raw milk and in the production of fermented dairy products such as cheese, yogurt, and fermented milk (including probiotics). Either as starter, as adjunct cultures, or as probiotics, Lactobacillus strains are used as food preservatives not only to prevent the development of food spoilage but also to give consumers a health benefit. Some lactobacilli produce bacteriocins, proteins active against other bacteria. In recent years, the interest in these compounds has grown substantially due to their potential usefulness as natural substitute for chemical food preservatives in the production of foods with enhanced shelf life and/or safety. Bacteriocins can be incorporated directly into fermented foods, or indirectly by using a bacteriocin-producing strain, as a starter or adjunct culture. As the consumers’ interest in natural and healthy foods increases, LAB are currently playing a key role in the development of new products that may respond to this demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MR, Nicolaides L (1997) Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8:227–239

    Article  Google Scholar 

  • Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, de Melo Franco BDG, Chobert JM, Haertlé T (2013) Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20:42–49

    Article  CAS  PubMed  Google Scholar 

  • Allison G, Fremaux C, Ahn C, Klaenhammer TR (1994) Expansion of the bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176:2235–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML (2013) Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of Tween 80. J Proteome Res 12:5313–5322

    Article  CAS  PubMed  Google Scholar 

  • Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Commun Curr Res Educ Top Trends Appl Microbiol 1:475–486

    Google Scholar 

  • Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo L, Lopez E, Lema C (1993) Microflora present in kefir grains of the Galician region (North-West of Spain). J Dairy Res 60:263–267

    Article  CAS  PubMed  Google Scholar 

  • Arauz LJ, Jozala AF, Mazzola PG, Penna TCV (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154

    Article  CAS  Google Scholar 

  • Arqués JL, Fernández J, Gaya P, Nuñez M, Rodríguez E, Medina M (2004) Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens in milk. Int J Food Microbiol 95:225–229

    Article  PubMed  CAS  Google Scholar 

  • Arqués JL, Rodríguez E, Nuñez M, Medina M (2011) Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control 22:457–461

    Article  CAS  Google Scholar 

  • Barefoot SF, Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barouei J, Karbassi A, Ghoddusi HB, Mortazavi A, Ramezani R, Moussavi M (2011) Impact of native Lactobacillus paracasei subsp. paracasei and Pediococcus spp. as adjunct cultures on sensory quality of Iranian white brined cheese. Int J Dairy Technol 64:526–535

    Article  CAS  Google Scholar 

  • Batt C (2014) Lactobacillus. Encycl Food Microbiol 2:409–411, http://dx.doi.org/10.1016/B978-0-12-384730-0.00179-8

    Article  Google Scholar 

  • Beshkova D, Frengova G (2012) Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci 12:419–432

    Article  CAS  Google Scholar 

  • Bezekova J (2013) Phenotypic and genotypic identification of NSLAB from raw cow milk. Sci Pap Anim Sci Biotechnol 46:88–92

    Google Scholar 

  • Bian L, Molan AL, Maddox I, Shu Q (2011) Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World J Microbiol Biotechnol 27:991–998

    Article  Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97

    Article  CAS  PubMed  Google Scholar 

  • Bove CG, Lazzi C, Bernini V, Bottari B, Neviani E, Gatti M (2011) cDNA-amplified fragment length polymorphism to study the transcriptional responses of Lactobacillus rhamnosus growing in cheese-like medium. J Appl Microbiol 111:855–864

    Article  CAS  PubMed  Google Scholar 

  • Bove CG, Angelis MD, Gatti M, Calasso M, Neviani E, Gobbetti M (2012) Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics 12:3206–3218

    Article  CAS  PubMed  Google Scholar 

  • Broadbent JR, Brighton C, McMahon DJ, Farkye NY, Johnson ME, Steele JL (2013) Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter. J Dairy Sci 96:4212–4222

    Article  CAS  PubMed  Google Scholar 

  • Burns P, Cuffia F, Milesi M, Vinderola G, Meinardi C, Sabbag N, Hynes E (2012) Technological and probiotic role of adjunct cultures of non-starter lactobacilli in soft cheeses. Food Microbiol 30:45–50

    Article  PubMed  Google Scholar 

  • Campos CA, Castro MP, Rivas FP, Schelegueda LI (2013) Bacteriocins in food: evaluation of the factors affecting their effectiveness. In: Méndez-Vila A (ed) Microbial pathogens and strategies for combating them: science, technology and education, Vol. 2, Antimicrobial natural products – biocontrol. Formatex Research Center, Badajoz, pp 994–1004

    Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Castro JM, Tornadijo ME, Fresno JM, Sandoval H (2015) Biocheese: a food probiotic carrier. BioMed Res Int 2015:723056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501

    Article  CAS  PubMed  Google Scholar 

  • Chaves ACSD, Kleerebezem M, Lerayer ALS, Hugenholtz J (1999) Improved yoghurt flavour by metabolic engineering of Streptococcus thermophilus. In: Sixth symposium on lactic acid bacteria, book of abstracts G (vol 2)

    Google Scholar 

  • Chou YE, Edwards CG, Luedecke LO, Bates MP, Clark S (2003) Non-starter lactic acid bacteria and aging temperature affect calcium lactate crystallization in Cheddar cheese. J Dairy Sci 86:2516–2524

    Article  CAS  PubMed  Google Scholar 

  • Christiansen P, Petersen MH, Kask S, Møller PL, Petersen M, Nielsen EW, Vogensen FK, Ardö Y (2005) Anticlostridial activity of Lactobacillus isolated from semi-hard cheeses. Int Dairy J 15:901–909

    Article  CAS  Google Scholar 

  • Ciprovica I, Mikelsone ALLA (2011) The influence of ripening temperature on diversity of non-starter lactic acid bacteria in semi-hard cheeses. Rom Biotechnol Lett 16:155–162

    Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Article  CAS  PubMed  Google Scholar 

  • D’Angelis CEM, Polizello ACM, Nonato MC, Spadaro ACC, De Martinis ECP (2008) Purification, characterization and n-terminal amino acid sequencing of sakacin 1, a bacteriocin produced by Lactobacillus sakei 1. J Food Saf 29:636–649

    Article  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  • De Klerk HC, Coetzee JN (1961) Antibiosis among lactobacilli. Nature 192:340–341

    Article  Google Scholar 

  • De Vuyst L, Callewaert R, Crabbe K (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142:817–827

    Article  Google Scholar 

  • Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  • Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr Drug Targets 3:107–122

    Article  CAS  PubMed  Google Scholar 

  • Dimov SG, Ivanova PM, Harizanova NT, Ivanova IV (2005) Bioactive peptides used by bacteria in the concurrence for the ecological niche: general classification and mode of action (overview). Biotechnol Biotechnol Equip 19:3–22

    Article  CAS  Google Scholar 

  • Donnelly CW (2013) From Pasteur to probiotics: a historical overview of cheese and microbes. Microbiol Spectr, 1, 1, CM-0001-2012. doi:10.1128/microbiolspec.CM-0001-2012

  • Dover SE, Aroutcheva AA, Faro S, Chikindas ML (2008) Natural antimicrobials and their role in vaginal health: a short review. Int J Probiot Prebiot 3:219

    Google Scholar 

  • Doyle MP, Meng J (2006) Bacteria in food and beverage production. In: The prokaryotes. Springer, New York, pp 797–811

    Chapter  Google Scholar 

  • Drider D, Fimland G, Hechard Y, Mcmullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erten H, Ağirman B, Gündüz CPB, Çarşanba E, Sert S, Bircan S, Tangüler H (2014) Importance of Yeasts and lactic acid bacteria in food processing. In: Food processing: strategies for quality assessment. Springer, New York, pp 351–378

    Google Scholar 

  • Felis GE, Dellaglio F, Torriani S (2009) Taxonomy of probiotic microorganisms. In: Prebiotics and probiotics science and technology. Springer, New York, pp 591–637

    Chapter  Google Scholar 

  • Gaggia F, Di Gioia D, Baffoni L, Biavati B (2011) The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Technol 22:S58–S66

    Article  CAS  Google Scholar 

  • Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332

    Article  PubMed  CAS  Google Scholar 

  • Gänzle MG, Vogel RF (2003) Studies on the mode of action of reutericyclin. Appl Environ Microbiol 69:1305–1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Article  PubMed  PubMed Central  Google Scholar 

  • Garmiene G, Salomskiene J, Jasutiene I, Macioniene I, Miliauskiene I (2010) Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft 65:295–298

    CAS  Google Scholar 

  • Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterisation of kefir grains. J Dairy Res 68:639–652

    Article  CAS  PubMed  Google Scholar 

  • Gatti M, Bottari B, Lazzi C, Neviani E, Mucchetti G (2014) Invited review: microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J Dairy Sci 97:573–591

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Sun Y, **n X, Wang Y, ** W (2016) Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice. Sci Rep 6:19366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbetti M, Minervini F (2014) Lactobacillus casei. Encycl Food Microbiol 2:432–438

    Article  Google Scholar 

  • Gobbetti M, De Angelis M, Di Cagno R, Mancini L, Fox PF (2015) Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci Technol 45:167–178

    Article  CAS  Google Scholar 

  • Hammes WP, Hertel C (2009) Genus I. Lactobacillus. The Firmicutes. Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York

    Google Scholar 

  • Hassan FA, El-Gawad MAA, Enab AK (2012) Flavour compounds in cheese (review). J Acad Res Part A 4:169–181

    Article  Google Scholar 

  • Hati S, Mandal S, Prajapati JB (2013) Novel starters for value added fermented dairy products. Curr Res Nutr Food Sci J 1:83–91

    Article  Google Scholar 

  • Hickey CD, Sheehan JJ, Wilkinson MG, Auty MA (2015) Growth and location of bacterial colonies within dairy foods using microscopy techniques: a review. Front Microbiol 6:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurdle JG, Heathcott A, Yang L, Yan B, Lee RE (2011) Reutericyclin and related analogues kill stationary phase Clostridium difficile at achievable colonic concentrations. J Antimicrob Chemother 66:1773–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst A (1981) Nisin. In: Perlman D, Laskin AI (eds) Advances in applied microbiology. Academic, New York, pp 85–123

    Google Scholar 

  • Irmler S, Bavan T, Oberli A, Roetschi A, Badertscher R, Guggenbühl B, Berthoud H (2013) Catabolism of Serine by Pediococcus acidilactici and Pediococcus pentosaceus. Appl Environ Microbiol 79:1309–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito A, Sato Y, Kudo S, Sato S, Nakajima H, Toba T (2003) The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr Microbiol 47:0231–0236

    Article  CAS  Google Scholar 

  • Joerger C, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jokovic N, Vukasinovic M, Veljovic K, Tolinacki M, Topisirovic L (2011) Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening. Arch Biol Sci 63:1–10

    Article  Google Scholar 

  • Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T (1997) Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int J Food Microbiol 34:145–156

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, Weiss N (1986) Regular, nonsporing gram-positive rods. Bergey’s Manual Syst Bacteriol 2:1208–1234

    Google Scholar 

  • Kawai Y, Saito T, Kitazawa H, Itoh T (1998) Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N-and C-terminal ends. Biosci Biotechnol Biochem 62:2438–2440

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J (2004) Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol 70:2906–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Kołakowski P, Podolak R, Kowalska M (2012) Microbial profile of Gouda cheese during ripening in two independent chambers-a short report. Polish J Food Nutr Sci 62:179–184

    Google Scholar 

  • König H, Fröhlich J (2009) Lactic acid bacteria. In: Biology of microorganisms on grapes, in must and in wine. Springer, Berlin/Heidelberg, pp 3–29

    Chapter  Google Scholar 

  • Lacroix N, St-Gelais D, Champagne CP, Fortin J, Vuillemard JC (2010) Characterization of aromatic properties of old-style cheese starters. J Dairy Sci 93:3427–3441

    Article  CAS  PubMed  Google Scholar 

  • Laëtitia G, Pascal D, Yann D (2014) The citrate metabolism in homo-and heterofermentative LAB: a selective means of becoming dominant over other microorganisms in complex ecosystems. Food Nutr Sci 2014:953–969

    Article  CAS  Google Scholar 

  • Langa S, Landete JM, Martín-Cabreja I, Rodríguez E, Arqués JL, Medina M (2013) In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control 33:200–206

    Article  CAS  Google Scholar 

  • Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13:325–336

    Article  CAS  Google Scholar 

  • Larsen AG, Nørrung B (1993) Inhibition of Listeria monocytogenes by bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Lett Appl Microbiol 17:132–134

    Article  CAS  Google Scholar 

  • Lee KH, Park JY, Jeong SJ, Kwon GH, Lee HJ, Chang HC, Chung DK, Lee JH, Kim JH (2007) Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J Microbiol Biotechnol 17:287–296

    CAS  PubMed  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moeller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CW, Chen HL, Liu JR (1999) Identification and characterization of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust J Dairy Technol 54:14–18

    Google Scholar 

  • Liu Y, **e XX, Ibrahim SA, Khaskheli SG, Yang H, Wang YF, Huang W (2016) Characterization of Lactobacillus pentosus as a starter culture for the fermentation of edible oyster mushrooms (Pleurotus spp.). LWT-Food Sci Technol 68:21–26

    Article  CAS  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  • Lü X, Yi L, Dang J, Dang Y, Liu B (2014) Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control 46:264–271

    Article  CAS  Google Scholar 

  • Lüthi-Peng Q, Schärer S, Puhan Z (2002) Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl Microbiol Biotechnol 60:73–80

    Article  PubMed  CAS  Google Scholar 

  • Mannu L, Comunian R, Scintu MF (2000) Mesophilic lactobacilli in Fiore Sardo cheese: PCR-identification and evolution during cheese ripening. Int Dairy J 10:383–389

    Article  CAS  Google Scholar 

  • Marshall VM, Cole WM, Brooker BE (1984) Observations on the structure of kefir grains and the distribution of the microflora. J Appl Bacteriol 57:491–497

    Article  Google Scholar 

  • Marty E, Buchs J, Eugster-Meier E, Lacroix C, Meile L (2012) Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR–RFLP. Food Microbiol 29:157–166

    Article  CAS  PubMed  Google Scholar 

  • Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F (2004) Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 97:314–322

    Article  CAS  PubMed  Google Scholar 

  • Messens W, De Vuyst L (2002) Inhibitory substances produced by lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff E (1908) The prolongation of life: optimistic studies. G.P. Putnam`Sons, New York

    Google Scholar 

  • Milesi MM, Wolf IV, Bergamini CV, Hynes ER (2010) Two strains of non-starter lactobacilli increased the production of flavor compounds in soft cheeses. J Dairy Sci 93:5020–5031

    Article  CAS  PubMed  Google Scholar 

  • Muhialdin BJ, Hassan Z, Imdakim MMA, Kahar FKSA, Aween MM (2012) Malaysian isolates of lactic acid bacteria with antibacterial activity against Gram-positive and Gram-negative pathogenic bacteria. J Food Res 1:110

    Article  Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  • Neviani E, Bottari B, Lazzi C, Gatti M (2013) New developments in the study of the microbiota of raw-milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano. Front Microbiol 4:1–14

    Article  Google Scholar 

  • Nissen-Meyer J, Holo H, Harvastein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, Giblin L, McSweeney PHL, Sheehan JJ, Cotter PD (2013) Nucleic acid-based approaches to investigate microbial-related cheese quality defects. Front Microbiol 4:1

    PubMed  PubMed Central  Google Scholar 

  • Okkers DJ, Dicks LMT, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87:726–734

    Article  CAS  PubMed  Google Scholar 

  • Olaoye OA, Ntuen IG (2011) Spoilage and preservation of meat: a general appraisal and potential of lactic acid bacteria as biological preservatives. Int Res J Biotechnol 2:33–46

    Google Scholar 

  • Ortolani MBT, Moraes PM, Perin LM, Viçosa GN, Carvalho KG, Júnior AS, Nero LA (2010) Molecular identification of naturally occurring bacteriocinogenic and bacteriocinogenic-like lactic acid bacteria in raw milk and soft cheese. J Dairy Sci 93:2880–2886

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Shah N (2014) Current scenario of antimicrobial compounds produced by food grade bacteria in relation to enhance food safety and quality. J Innov Biol 1:189–194

    CAS  Google Scholar 

  • Patton G, Don KA (2005) New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol 8:543–551

    Article  CAS  PubMed  Google Scholar 

  • Pidoux M, Marshall VM, Zanoni P, Brooker B (1990) Lactobacilli isolated from sugary kefir grains capable of polysaccharide production and minicell formation. J Appl Microbiol 69:311–320

    Article  CAS  Google Scholar 

  • Prajapati JB, Nair BM (2008) The history of fermented foods. In: Handbook of fermented functional foods. CRC Press, Boca Raton, pp 1–25

    Google Scholar 

  • Rammelsberg M, Muller E, Radler F (1990) Caseicin 80: purification and characterization of a new bacteriocin from Lactobacillus casei. Arch Microbiol 154:249–252

    Article  CAS  Google Scholar 

  • Reis JA, Paula AT, Casarotti SN, Penna ALB (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4:124–140

    Article  CAS  Google Scholar 

  • Ricciardi A, Guidone A, Ianniello RG, Cioffi S, Aponte M, Pavlidis D, Tsakalidou E, Zotta T, Parente E (2015) A survey of non-starter lactic acid bacteria in traditional cheeses: culture dependent identification and survival to simulated gastrointestinal transit. Int Dairy J 43:42–50

    Article  CAS  Google Scholar 

  • Ristagno D, Hannon JA, Beresford T, McSweeney PLH (2012) Effects of a bacteriocin-producing strain of Lactobacillus paracasei on the non-starter microflora of Cheddar cheese. Int J Dairy Technol 65:523–530

    Article  CAS  Google Scholar 

  • Rodríguez-Gómez F, Romero-Gil V, García-García P, Garrido-Fernández A, Arroyo-López FN (2014) Fortification of table olive packing with the potential probiotic bacteria Lactobacillus pentosus TOMC-LAB2. Front Microbiol 5:467

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg E (2013) The prokaryotes – prokaryotic biology and symbiotic associations. Cap. 13. Biotechnology and applied microbiology. Springer, Berlin/Heidelberg, pp 315–328

    Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  CAS  PubMed  Google Scholar 

  • Ryssel H, Kloeters O, Germann G, Schäfer T, Wiedemann G, Oehlbauer M (2009) The antimicrobial effect of acetic acid—an alternative to common local antiseptics? Burns 35:695–700

    Article  CAS  PubMed  Google Scholar 

  • Santer M (2010) Joseph Lister: first use of a bacterium as a ‘model organism’ to illustrate the cause of infectious disease of humans. Notes Rec R Soc 64:59–65

    Article  PubMed  Google Scholar 

  • Saxelin M, Rautelin H, Salminen S, Mäkelä PH (1996) Safety of commercial products with viable Lactobacillus strains. Infect Dis Clin Pract 5:331–335

    Article  Google Scholar 

  • Settanni L, Moschetti G (2010) Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol 27:691–697

    Article  CAS  PubMed  Google Scholar 

  • Sgarbi E, Lazzi C, Tabanelli G, Gatti M, Neviani E, Gardini F (2013) Non-starter lactic acid bacteria volatilomes produced using cheese components. J Dairy Sci 96:4223–4234

    Article  CAS  PubMed  Google Scholar 

  • Sharpe ME (1981) The genus Lactobacillus. Prokaryotes 2:1653–1679

    Google Scholar 

  • Sheehan JJ (2013) Milk quality and cheese diversification. Irish J Agric Food Res 52:243–253

    Google Scholar 

  • Siezen RJ, van Hylckama Vlieg JE (2011) Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 10:1

    Article  Google Scholar 

  • Simova ED, Frengova GI, Beshkova DM (2003) Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-L actobacillus casei subsp. casei co-cultures in whey ultrafiltrate. Zeitschrift für Naturforschung 58:225–229

    CAS  PubMed  Google Scholar 

  • Singh S, Singh R (2014) Phenotypic and genotypic characterization of non-starter Lactobacillus species diversity in Indian Cheddar cheese. LWT-Food Sci Technol 55:415–420

    Article  CAS  Google Scholar 

  • Skelin A, Fuka MM, Majhenic AC, Redzepovic S, Samarzija D, Matijasic BB (2012) Phenotypic and genotypic characterization of indigenous Lactobacillus community from traditional Istrian ewe’s cheese. Food Technol Biotechnol 50:362

    CAS  Google Scholar 

  • Solieri L, Bianchi A, Giudici P (2012) Inventory of non starter lactic acid bacteria from ripened Parmigiano Reggiano cheese as assessed by a culture dependent multiphasic approach. Syst Appl Microbiol 35:270–277

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Rutella GS, Tagliazucchi D (2015) Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation. Food Microbiol 51:108–116

    Article  CAS  PubMed  Google Scholar 

  • Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita T, Togawa M (1994) Efficacy of Lactobacillus preparation Biolactis powder in children with rotavirus enteritis. Jpn J Pediatr 47:2755–2762

    Google Scholar 

  • Svetoch EA, Eruslanov BV, Levchuk VP, Perelygin VV, Mitsevich EV, Mitsevich IP, Stepanshin J, Dyatlov I, Seal BS, Stern NJ (2011) Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin and spectra of antimicrobial activity. Appl Environ Microbiol 77:2749–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara T, Kanatani K (1997) Isolation and partial characterization of crispacin A, a cell-associated bacteriocin produced by Lactobacillus crispatus JCM 2009. FEMS Microbiol Lett 147:287–290

    Article  CAS  Google Scholar 

  • Takizawa S, Kojima S, Tamura S, Fu**aga S, Benno Y, Nakase T (1998) The composition of the Lactobacillus flora in kefir grains. Syst Appl Microbiol 21:121–127

    Article  CAS  Google Scholar 

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WS, Budinich MF, Ward R, Broadbent JR, Steele JL (2012) Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids. J Dairy Sci 95:1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol 15:460–468

    Article  CAS  Google Scholar 

  • Toba T, Arihara K, Adachi S (1987) Comparative study of polysaccharides from kefir grains, an encapsulated homofermentative Lactobacillus species and Lactobacillus kefir. Milchwissenschaft 42:565–568

    CAS  Google Scholar 

  • Toba T, Yoshioka E, Itoh T (1991) Lacticin, a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis. Lett Appl Microbiol 12:43–45

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LM (2007) Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Braz J Microbiol 38:166–172

    Article  Google Scholar 

  • Todorov SD, Franco BDGDM (2010) Lactobacillus plantarum: characterization of the species and application in food production. Food Rev Int 26:205–229

    Article  CAS  Google Scholar 

  • Tulini FL (2014) Isolation of lactic acid bacteria from milk and cheese with potential for food biopreservation and utilization for increasing whey digestibility. Doctoral thesis, Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto Ribeirão Preto

    Google Scholar 

  • Tuma Š, Kučerová K, Plocková M (2008) Isolation of anticlostridially active lactobacilli from semi-hard cheese. Czech J Food Sci 26:324–332

    CAS  Google Scholar 

  • Tungjaroenchai W, Drake MA, White CH (2001) Influence of adjunct cultures on ripening of reduced fat Edam cheeses. J Dairy Sci 84:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed Regist 53:11247–11251

    Google Scholar 

  • Van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  PubMed  CAS  Google Scholar 

  • Van Hoorde K, Van Leuven I, Dirinck P, Heyndrickx M, Coudijzer K, Vandamme P, Huys G (2010) Selection, application and monitoring of Lactobacillus paracasei strains as adjunct cultures in the production of Gouda-type cheeses. Int J Food Microbiol 144:226–235

    Article  PubMed  CAS  Google Scholar 

  • Vaughan A, Eijsink VG, Van Sinderen D (2003) Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuyst LD, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London/New York

    Book  Google Scholar 

  • Walter J, Heng NCK, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69:2044–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2004) Isolation and characterization of the microbial population of different South African kefir grains. Int J Dairy Technol 57:33–37

    Article  Google Scholar 

  • Yarlagadda AB (2014) Assessment of different novel approaches to accelerate cheese ripening for a range of applications. Doctoral dissertation, University of Limerick

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Reginensi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Reginensi, S.M., Olivera, J.A., Bermúdez, J., González, M.J. (2016). Lactobacillus in the Dairy Industry: From Natural Diversity to Biopreservation Resources. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_4

Download citation

Publish with us

Policies and ethics

Navigation