The Influence of Climate Change on Insect Invasions in Temperate Forest Ecosystems

  • Chapter
  • First Online:
Challenges and Opportunities for the World's Forests in the 21st Century

Part of the book series: Forestry Sciences ((FOSC,volume 81))

Abstract

Climate change could potentially become one of the most important influences on forest ecosystem function and diversity due to its profound effect on many biotic processes. Additionally, climate change could interact with other anthropogenically driven agents of forest alteration, such as non-native invasive species. Although their arrival is primarily facilitated by global trade and travel, climate and changes to climate have affected and will likely continue to affect rates of invasive species establishment, range expansion, and impact to native ecosystems. In this chapter, we attempt to synthesize broadly the interaction between climate change and non-native insect invasions in temperate forest ecosystems. We highlight four primary effects: changes in distributional ranges, outbreak frequency and intensity, seasonality and voltinism, and trophic interactions. A paucity of data for some processes necessitated the use of exemplar native species in native ranges, and their extrapolation to non-native species. Future studies should give greater attention to the complexity associated with these interacting forces of change in forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc Biol Sci Ser B 277:1281–1287

    Google Scholar 

  • Ammunet T, Heisswolf A, Klemola N, Klemola T (2010) Expansion of the winter moth outbreak range: no restrictive effects of competition with the resident autumnal moth. Ecol Entomol 35:45–52

    Google Scholar 

  • Arnaldo PS, Oliveira I, Santos J, Leite S (2011) Climate change and forest plagues: the case of the pine processionary moth in Northeastern Portugal. For Syst 20:508–515

    Google Scholar 

  • Aukema BH, Carroll AL, Zhu J, Raffa KF, Sickley TA, Taylor SW (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29:427–441

    Google Scholar 

  • Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental US. Bioscience 60:886–897

    Google Scholar 

  • Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Franke SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental United States. PLoS One 6:e24587

    PubMed  CAS  Google Scholar 

  • Ayres MP, MacLean SF (1987) Development of birch leaves and the growth energetics of Epirrita autumnata (Geometridae). Ecology 68:558–568

    Google Scholar 

  • Ayres MP, Scriber JM (1994) Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol Monogr 64:465–482

    Google Scholar 

  • Balanya J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic tracks global climate warming in Drosophila subobscura. Science 313:1773–1775

    PubMed  CAS  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    PubMed  CAS  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Google Scholar 

  • Barbosa P, Schultz JC (eds) (1987) Insect outbreaks. Academic Press, San Diego

    Google Scholar 

  • Bartell SM, Nair SK (2003) Establishment risks for invasive species. Risk Anal 24:833–845

    Google Scholar 

  • Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096

    Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey P, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Google Scholar 

  • Benrey B, Denno RF (1997) The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987–999

    Google Scholar 

  • Berg EE, Henry JD, Fastie CL, DeVoider AD, Matsuoka SM (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance. For Ecol Manag 227:219–232

    Google Scholar 

  • Bjørnstad O, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 11:427–431

    Google Scholar 

  • Bjørnstad ON, Peltonen M, Liebhold AM, Baltensweiler W (2002) Waves of larch budmoth outbreaks in the European alps. Science 298:1020–1023

    PubMed  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    PubMed  CAS  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in long distance migratory bird. Nature 441:81–83

    PubMed  CAS  Google Scholar 

  • Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Path 57:792–808

    Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006a) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Google Scholar 

  • Brockerhoff EG, Liebhold AM, Jactel H (2006b) The ecology of forest insect invasions and advances in their management. Can J For Res 36:263–268

    Google Scholar 

  • Buse A, Good JEG (1996) Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in pedunculate oak (Quercus robur L.) under simulated climate change. Ecol Entomol 21:335–343

    Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796

    Google Scholar 

  • Cerezke HF (1995) Egg gallery, brood production, and adult characteristics of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera, Scolytidae), in three pine hosts. Can Entomol 127:955–965

    Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    PubMed  CAS  Google Scholar 

  • Chen S, Fleischer SJ, Tobin PC, Saunders MC (2011) Projecting insect voltinism under high and low greenhouse gas emission conditions. Environ Entomol 40:505–515

    PubMed  Google Scholar 

  • Corley JC, Villacide JM, Bruzzone OA (2007) Spatial dynamics of a Sirex noctilio woodwasp population within a pine plantation in Patagonia, Argentina. Entomol Exp Appl 125:231–236

    Google Scholar 

  • Cornellisen T (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol 40:155–163

    Google Scholar 

  • Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv Biol 13:700–712

    Google Scholar 

  • Coyle DR, Nebeker TE, Hart ER, Mattson WJ (2005) Biology and management of insect pests in North American intensively managed hardwood forest systems. Annu Rev Entomol 50:1–29

    PubMed  CAS  Google Scholar 

  • Crosby AW (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cudmore TJ, Björklund N, Carroll AL, Lindgren BS (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J Appl Ecol 47:1036–1043

    Google Scholar 

  • Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW (2011) Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 20:2157–2171

    PubMed  Google Scholar 

  • Dale VH, Joyce LA, Mcnulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Google Scholar 

  • Danks HV (2006) Insect adapatations to cold and changing environments. Can Entomol 138:1–23

    Google Scholar 

  • Davidson J, Wickland AC, Patterson HA, Falk KR, Rizzo DM (2005) Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596

    PubMed  Google Scholar 

  • de la Giroday H-MC, Carroll AL, Lindgren BS, Aukema BH (2011) Incoming! Association of landscape features with dispersing mountain pine beetle populations during a range expansion event in western Canada. Landsc Ecol 26:1097–1110

    Google Scholar 

  • de la Giroday H-MC, Carroll AL, Aukema BH (2012) Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. J Biogeogr 39:1112–1123

    Google Scholar 

  • Dermody O, O’Neill B, Zangerl A, Berenbaum M, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod Plant Interact 2:125–135

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672

    PubMed  CAS  Google Scholar 

  • Dewar RC, Watt AD (1992) Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89:557–559

    Google Scholar 

  • di Castri F (1989) History of biological invasions with special emphasis on the old world. In: Drake JA, Mooney HA, di Castri F et al (eds) Biological invasions: a global perspective. Wiley, New York, pp 1–30

    Google Scholar 

  • Dixon AFG (1976) Timing of egg hatch and viability of the Sycamore aphid, Drepanosiphum platanoides (Schr.), at bud burst of Sycamore, Acer platanus L. J Anim Ecol 45:593–603

    Google Scholar 

  • Donnelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55:805–817

    PubMed  Google Scholar 

  • Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596

    Google Scholar 

  • Elkinton JS, Parry D, Boettner GH (2006) Implicating an introduced generalist parasitoid in the invasive browntail moth’s enigmatic demise. Ecology 87:2664–2672

    PubMed  Google Scholar 

  • Elkinton JS, Boettner GH, Sremac M, Gwiazdowski R, Hunkins RR, Callahan J, Scheufele SB, Donahue CP, Porter AH, Khrimian A, Whited BM, Campbell NK (2010) Survey for winter moth (Lepidoptera: Geometridae) in northeastern North America with pheromone-baited traps and hybridization with the native Bruce spanworm (Lepidoptera: Geometridae). Ann Entomol Soc Am 103:135–145

    CAS  Google Scholar 

  • Engel K, Tollrian R, Jeschke JM (2011) Integrating biological invasions, climate change and phenotypic plasticity. Comm Integr Biol 4:247–250

    Google Scholar 

  • Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc Biol Sci Ser B 274:671–679

    Google Scholar 

  • Evangelista PH, Kumar S, Stohlgren TJ, Young NE (2011) Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For Ecol Manag 262:307–316

    Google Scholar 

  • Faccoli M (2009) Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps. Environ Entomol 38:307–316

    PubMed  Google Scholar 

  • Feeny PP (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Google Scholar 

  • Fernández-Triana J, Smith MA, Boudreault C, Goulet H, Hebert PDN, Smith AC, Roughley R (2011) A poorly known high-latitude parasitoid wasp community: unexpected diversity and dramatic changes through time. PLoS One 6:e23719

    PubMed  Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT, Corff JL (2008) Timing is everything? Phenological synchrony and population variability in leaf-chewing herbivores of Quercus. Ecol Entomol 33:276–285

    Google Scholar 

  • Fox CW, Waddell KJ, Groeters FR, Mousseau TA (1997) Variation in budbreak phenology affects the distribution of a leaf-mining beetle (Brachys tessellatus) on turkey oak (Quercus laevis). Ecoscience 4:480–489

    Google Scholar 

  • Frost CJ, Hunter MD (2004) Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85:3335–3347

    Google Scholar 

  • Gandhi JKJ, Herms DA (2010) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol Invasions 12:389–405

    Google Scholar 

  • Gilbert M, Grégoire J-C, Freise JF, Heitland W (2004) Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. J Anim Ecol 73:459–468

    Google Scholar 

  • Gilchrist GW, Huey RB, Balanya J, Pascual M, Serra L (2001) A time series of evolution in action: a latitudinal cline in wing size in South American Drosophila subobscura. Evolution 58:768–780

    Google Scholar 

  • Gomi T (2007) Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan. Ecol Res 22:855–861

    Google Scholar 

  • Gomi T, Takeda M (1996) Changes in life-history traits in the Fall Webworm within half a century of introduction to Japan. Funct Ecol 10:384–389

    Google Scholar 

  • Gomi T, Adachi K, Shimizu A, Tanimoto K, Kawabata E, Takeda M (2009) Northerly shift in voltinism watershed in Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) along the Japan Sea coast: evidence of global warming? Appl Entomol Zool 44:357–362

    Google Scholar 

  • Gray DR (2004) The gypsy moth life stage model: landscape-wide estimates of gypsy moth establishment using a multi-generational phenology model. Ecol Model 176:155–171

    Google Scholar 

  • Gray DR, Tanner JA, Logan JA, Munson AS (2007) Using sterile gypsy moth eggs as a survey and experimental tool in the field: a comparison of hatching patterns. Ann Entomol Soc Am 100:439–443

    Google Scholar 

  • Hagen SB, Jepsen JU, Ims RA, Yoccoz NG (2007) Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? Ecography 30:299–307

    Google Scholar 

  • Hajek AE, Tobin PC (2010) Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes. Biol Invasions 12:2895–2912

    Google Scholar 

  • Hajek AE, McManus ML, Delalibera I Jr (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13

    Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, DeLucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Google Scholar 

  • Hance T, Van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    PubMed  CAS  Google Scholar 

  • Harrington R, Woiwood I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14:146–150

    PubMed  Google Scholar 

  • Harvey GT (1983) A geographic cline in egg weights in Choristoneura fumiferana (Lepidoptera: Tortricidae) and its significance to population dynamics. Can Entomol 115:1103–1108

    Google Scholar 

  • Hassall C, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Glob Chang Biol 13:933–941

    Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Google Scholar 

  • Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz M, Sheffield J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy T, Wolfe D (2007) Past and future changes in climate and hydrological indicators in the U.S. Northeast. Clim Dynam 28:381–407

    Google Scholar 

  • Haynes KJ, Liebhold AM, Fearer TM, Wang G, Norman GW, Johnson DM (2009) Spatial synchrony propagates through a forest food web via consumer–resource interactions. Ecology 90:2974–2983

    PubMed  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    PubMed  Google Scholar 

  • Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, London

    Google Scholar 

  • Hlasny T, Turcani M (2009) Insect pests as climate change driven disturbances in forest ecosystems. In: Strelcová K, Matyas C, Kleidon A et al (eds) Bioclimatology and natural hazards. Springer, Dordrecht, pp 165–177

    Google Scholar 

  • Hoddle MS (2004) Restoring balance: using exotic species to control invasive exotic species. Conserv Biol 18:38–49

    Google Scholar 

  • Holmes RT, Schultz JC, Nothnagle P (1979) Bird predation on forest insects: an exclosure experiment. Science 206:462–463

    PubMed  CAS  Google Scholar 

  • Holmes TP, Aukema JE, Von Holle B, Liebhold A, Sills E (2009) Economic impacts of invasive species in forests past, present, and future. Ann NY Acad Sci 1162:18–38

    PubMed  Google Scholar 

  • Hu J, Angeli S, Schuetz S, Luo Y, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agr For Entomol 11:359–375

    Google Scholar 

  • Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193

    Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, PyÅ¡ek P, Roques A, Sol D, Solarz W, Vilà M (2008) Gras** at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414

    Google Scholar 

  • Hunter AF (1991) Traits that distinguish outbreaking and non-outbreaking Macrolepidoptera feeding on northern hardwood trees. Oikos 60:275–282

    Google Scholar 

  • Hunter AF (1993) Gypsy moth population sizes and the window of opportunity in the spring. Oikos 68:531–538

    Google Scholar 

  • Hunter AF (1995) Ecology, life-history, and phylogeny of outbreak and non-outbreak species. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic Press, New York, pp 41–64

    Google Scholar 

  • Hunter AF, Elkinton JS (2000) Effects of synchrony with host plant on populations of a spring-feeding Lepidopteran. Ecology 81:1248–1261

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) The physical science basis. Working group I. Contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Isard SA, Gage SH, Comtois P, Russo JM (2005) Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience 55:851–861

    Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    PubMed  Google Scholar 

  • Jepsen JU, Kapari L, Hagen SB, Schott T, Vindstad OPL, Nilssen AC, Ims RA (2011) Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob Chang Biol 17:2071–2083

    Google Scholar 

  • Johnson DM, Liebhold AM, Bjørnstad ON, McManus ML (2005) Circumpolar variation in periodicity and synchrony among gypsy moth populations. J Anim Ecol 74:882–892

    Google Scholar 

  • Jones BC, Despland E (2006) Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Can J Zool 84:628–633

    Google Scholar 

  • Jonsson AM, Appelberg G, Harding S, Barring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol 15:486–499

    Google Scholar 

  • Jonsson AM, Harding S, Krokene P, Lange H, Lindelow A, Okland B, Ravn HP, Schroeder LM (2011) Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim Chang 109:695–718

    Google Scholar 

  • Kausrud K, Økland B, Skarpaas O, Grégoire J-C, Erbilgin N, Stenseth NC (2012) Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev 87:34–51

    PubMed  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Kerdelhué C, Zane L, Simonato M, Salvato P, Rousselet J, Roques A, Battisti A (2009) Quaternary history and contemporary patterns in a currently expanding species. BMC Evol Biol 9:220

    PubMed  Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Google Scholar 

  • Kopper BJ, Lindroth RL (2003) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103

    PubMed  Google Scholar 

  • Kovacs KF, Haight RF, McCullough DG, Mercader RJ, Siegert NW, Liebhold AM (2010) Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol Econ 69:569–578

    Google Scholar 

  • Kunkel KE, Huang H-C, Liang X-Z, Lin J-T, Wuebbles D, Tao Z, Williams A, Caughey M, Zhu J, Hayhoe K (2008) Sensitivity of future ozone concentrations in the northeast USA to regional climate change. Mitig Adapt Strateg Glob Chang 13:5–6

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    PubMed  CAS  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    PubMed  CAS  Google Scholar 

  • Liebhold AM, MacDonald WL, Bergdahl D, Mastro V (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30:1–49

    Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the United States. Front Ecol Environ 10:135–143

    Google Scholar 

  • Lockwood JL, Hoopes M, Marchetti M (2007) Invasion ecology. Blackwell Publishing Ltd., Malden

    Google Scholar 

  • Logan JA, Powell JA (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am Entomol 47:160–173

    Google Scholar 

  • Logan JA, Régnière J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137

    Google Scholar 

  • Logan JA, Macfarlane WW, Willcox L (2010) Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecol Appl 20:895–902

    PubMed  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ (2002) Insect defoliation and nitrogen cycling in forests. Bioscience 52:335–341

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    CAS  Google Scholar 

  • Marquis RJ, Whelan CJ (1994) Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75:2007–2014

    Google Scholar 

  • Martel J, Kause A (2002) The phenological window of opportunity for early-season birch sawflies. Ecol Entomol 27:302–307

    Google Scholar 

  • Martel J, Hanhimaki S, Kause A, Haukioja E (2001) Diversity of birch sawfly responses to seasonally atypical diets. Entomol Exp Appl 100:301–309

    Google Scholar 

  • Masters GJ, Brown VK, Clarke IP, Whittaker JB, Hollier JA (1998) Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecol Entomol 23:45–52

    Google Scholar 

  • Menendez R, Gonzalez-Meglias A, Lewis OT, Shaw MR, Thomas CD (2008) Escape from natural enemies during climate-driven range expansion: a case study. Ecol Entomol 33:413–421

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Ã…, Defila C, Donnelly A, Filella Y, Jatczak K, MÃ¥ge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, RemiÅ¡ová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Google Scholar 

  • Neumann FG, Minko G (1981) The Sirex woodwasp in Australian radiata pine plantations. Aust For 44:46–63

    Google Scholar 

  • Nielsen DG (1989) Exploiting natural resistance as a management tactic for landscape plants. Fla Entomol 72:413–418

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parry D, Spence JR, Volney WJA (1997) The response of natural enemies to experimentally increased populations of forest tent caterpillar. Ecol Entomol 22:97–108

    Google Scholar 

  • Parry D, Spence JR, Volney WJA (1998) Bud break phenology and natural enemies mediate survival of early instar forest tent caterpillar (Lepidoptera: Lasiocampidae). Environ Entomol 27:1368–1374

    Google Scholar 

  • Parry D, Goyer RA, Lenhard GJ (2001) Macrogeographic clines in fecundity, reproductive allocation, and offspring size of the forest tent caterpillar Malacosoma disstria. Ecol Entomol 26:281–291

    Google Scholar 

  • Payette S, Bhiry N, Delwaide A, Simard M (2000) Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Can J For Res 30:288–305

    Google Scholar 

  • Peltonen M, Liebhold AM, Bjørnstad ON, Williams DW (2002) Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal. Ecology 83:3120–3129

    Google Scholar 

  • Pimentel D (ed) (2002) Biological invasions. Economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton

    Google Scholar 

  • Pimentel D, Andow D, Dyson-Hudson R, Gallahan D, Jacobson S, Irish M, Kroop S, Moss A, Schreiner I, Shepard M, Thompson T, Vinzant B (1980) Environmental and social costs of pesticides: a preliminary assessment. Oikos 34:126–140

    Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol Econ 52:273–288

    Google Scholar 

  • Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J For 104:118–124

    Google Scholar 

  • Pöyry J, Leinonen R, Söderman G, Nieminen M, Heikkinen RK (2011) Climate-induced increase of moth multivoltinism in boreal regions. Glob Ecol Biogeogr 20:289–298

    Google Scholar 

  • Raimondo S, Liebhold AM, Strazanac J, Butler L (2004) Population synchrony within and among Lepidoptera species in relation to weather, phylogeny, and larval phenology. Ecol Entomol 29:96–105

    Google Scholar 

  • Régnière J, Nealis V, Porter K (2009) Climate suitability and management of the gypsy moth invasion into Canada. Biol Invasions 11:135–148

    Google Scholar 

  • Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci 167:1123–1150

    Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Google Scholar 

  • Robertson C, Nelson TA, Jelinski DE, Wulder MA, Boots B (2009) Spatial-temporal analysis of species range expansion: the case of the mountain pine beetle, Dendroctonus ponderosae. J Biogeogr 36:1446–1458

    Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142

    PubMed  Google Scholar 

  • Robinet C, Baier P, Pennerstorfer J, Schopf A, Roques A (2007) Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Glob Ecol Biogeogr 16:460–471

    Google Scholar 

  • Roland J, Embree DG (1995) Biological control of winter moth. Annu Rev Entomol 40:475–492

    CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on animals and plants. Nature 421:57–60

    PubMed  CAS  Google Scholar 

  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events: implications for food production, plant diseases, and pests. Glob Chang Hum Health 2:90–104

    Google Scholar 

  • Rouault G, Candau J-N, Lieutier F, Nageleisen L-M, Martin J-C, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624

    Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    PubMed  CAS  Google Scholar 

  • Roy DB, Sparks T (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416

    Google Scholar 

  • Royama T (1984) Population dynamics of the spruce budworm, Choristoneura fumiferana. Ecol Monogr 54:429–492

    Google Scholar 

  • Safranyik L, Shrimpton DM, Whitney HS (1975) An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in Western Canada. In: Baumgartner DM (ed) Management of lodgepole pine ecosystems symposium proceedings. Washington State University Cooperative Extension Service, Pullman, pp 406–428

    Google Scholar 

  • Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142:415–442

    Google Scholar 

  • Sambaraju K, Carroll AL, Zhu J, Stahl K, Moore RD, Aukema BH (2012) Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography 35:211–223

    Google Scholar 

  • Sherriff RL, Berg EE, Miller AE (2011) Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska. Ecology 92:1459–1470

    PubMed  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Siegert NW, McCullough DG, Venette RC, Hajek AE, Andresen JA (2009) Assessing the climatic potential for epizootics of the gypsy moth fungal pathogen Entomophaga maimaiga in the North Central United States. Can J For Res 39:1958–1970

    Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t! Population crashes of established introduced species. Biol Invasions 6:161–172

    Google Scholar 

  • Simberloff D, Rejmánek M (eds) (2011) Encyclopedia of biological invasions. University of California Press, Berkeley

    Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Google Scholar 

  • Simon RB, Thomas CD, Bale JS (2002) The influence of thermal ecology on the distribution of three nymphalid butterflies. J Appl Ecol 39:43–55

    Google Scholar 

  • Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos Trans R Soc Lond B Biol Sci 365:3161–3176

    PubMed  Google Scholar 

  • Slippers B, de Groot P, Wingfield MJ (eds) (2012a) The Sirex woodwasp and its fungal symbiont: research and management of a worldwide invasive pest. Springer, Dordrecht

    Google Scholar 

  • Slippers B, Hurley BP, Mlonyeni XO, de Groot P, Wingfield MJ (2012b) Factors affecting the efficacy of Deladenus siricidicola in biological control systems. In: Slippers B, de Groot P, Wingfield MJ (eds) The Sirex woodwasp and its fungal symbiont: research and management of a worldwide invasive pest. Springer, Dordrecht, pp 119–133

    Google Scholar 

  • Smith MT, Turgeon JT, De Groot P, Gasman B (2009) Asian longhorned beetle Anoplophora glabripennis (Motschulsky): lessons learned and opportunities to improve the process of eradication and management. Am Entomol 55:21–25

    Google Scholar 

  • Stange EE, Ayres MP, Bess JA (2011) Concordant population dynamics of Lepidoptera herbivores in a forest ecosystem. Ecography 34:772–779

    Google Scholar 

  • Stefanescu C, Penuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Chang Biol 9:1494–1506

    Google Scholar 

  • Steinbauer MJ, Kriticos DJ, Lukacs Z, Clarke AR (2004) Modeling a forest lepidopteran: phenological plasticity determines voltinism, which influences population dynamics. For Ecol Manag 198:117–131

    Google Scholar 

  • Stenseth NC, Mysterud A (2002) Climate, changing phenology, and other life history and traits: nonlinearity and match- mismatch to the environment. Proc Natl Acad Sci U S A 99:13379–13381

    PubMed  CAS  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2 mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13:1823–1842

    Google Scholar 

  • Stireman JO, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, Ricklefs RE, Gentry GL, Hallwachs W, Coley PD, Barone JA, Greeney HF, Connahs H, Barbosa P, Morais HC, Diniz IR (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci U S A 102:17384–17387

    PubMed  CAS  Google Scholar 

  • Stoyenoff JL, Witter JA, Montgomery ME, Chilcote CA (1994) Effects of host switching on gypsy moth (Lymantria dispar (L.)) under field conditions. Oecologia 97:143–157

    Google Scholar 

  • Strong DR, Pemberton RW (2000) Biological control of invading species—risk and reform. Science 288:1969–1970

    PubMed  CAS  Google Scholar 

  • Sun JH, Miao ZW, Zhang Z, Zhang ZN, Gillette NE (2004) Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), response to host semiochemicals in China. Environ Entomol 33:206–212

    CAS  Google Scholar 

  • Tauber MJ, Tauber CA (1976) Insect seasonality: diapause maintenance, termination, and postdiapause development. Annu Rev Entomol 21:81–107

    Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908

    Google Scholar 

  • Taylor CM, Davis HG, Civille JC, Grevstad FS, Hastings A (2004) Consequences of an Allee effect on the invasion of a Pacific estuary by Spartina alterniflora. Ecology 85:3254–3266

    Google Scholar 

  • Thuiller W, Richardson DM, PyÅ¡ek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Google Scholar 

  • Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and voltinism in a multivoltine insect species. Glob Chang Biol 14:951–957

    Google Scholar 

  • Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological invasions. Ecol Lett 14:615–624

    PubMed  Google Scholar 

  • Tobin PC, Bai BB, Eggen DA, Leonard DS (2012) The ecology, geopolitics, and economics of managing Lymantria dispar (L.) in the United States. Int J Pest Manag 58:195–210

    Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    PubMed  CAS  Google Scholar 

  • van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55

    PubMed  Google Scholar 

  • van Asch M, Julkunen-Tiito R, Visser ME (2010) Maternal effects in an insect herbivore as a mechanism to adapt to host plant phenology. Funct Ecol 24:1103–1109

    Google Scholar 

  • Vanhanen H, Veleli TO, Paivinen S, Kellomaki S, Niemela P (2007) Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth − a model study. Silva Fenn 41:621–638

    Google Scholar 

  • Varley GC, Gradwell GR, Hassell MP (1973) Insect population ecology. An analytical approach. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • Veteli TO, Lahtinen A, Repo T, Niemela P, Varama M (2005) Geographic variation in winter freezing susceptibility in the eggs of the European pine sawfly (Neodiprion sertifer). Agr Forest Entomol 7:115–120

    Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Biol Sci Ser B 268:289–294

    CAS  Google Scholar 

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Biol Sci Ser B 265:1867–1870

    Google Scholar 

  • Visser ME, Holleman LJM, Gienapp P (2006) Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147:164–172

    PubMed  Google Scholar 

  • Visser ME, Caro SP, van Oers K, Schaper SV, Helm B (2010) Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos Trans R Soc Lond B Biol Sci 365:3113–3127

    PubMed  CAS  Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Google Scholar 

  • Walther G-R, Roques A, Hulme PE, Sykes MT, PyÅ¡ek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    PubMed  Google Scholar 

  • Waring KM, Reboletti DM, Mork LA, Huang CH, Hofstetter RW, Garcia AM, Fule PZ, Davis TS (2009) Modeling the impacts of two bark beetle species under a warming climate in the Southwestern USA: ecological and economic consequences. Environ Manag 44:824–835

    Google Scholar 

  • Werner RA, Holsten EH, Matsuoka SM, Burnside RE (2006) Spruce beetles and forest ecosystems in south-central Alaska: a review of 30 years of research. For Ecol Manag 227:195–206

    Google Scholar 

  • Williams DW, Liebhold AM (1995a) Herbivorous insects and global change: potential changes in the spatial distribution of forest defoliator outbreaks. J Biogeogr 22:665–671

    Google Scholar 

  • Williams DW, Liebhold AM (1995b) Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England. Environ Entomol 24:987–995

    Google Scholar 

  • Wingfield MJ, Bernard Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. N Z J For Sci 40:S95–S103

    Google Scholar 

  • Wolda K (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–18

    Google Scholar 

  • Work TT, McCullough DG (2000) Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan. Environ Entomol 29:884–900

    Google Scholar 

  • Worner SP, Gevrey M (2006) Modelling global insect pest species assemblages to determine risk of invasion. J Appl Ecol 43:858–867

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Yan Z, Sun J, Don O, Zhang Z (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv 14:1735–1760

    Google Scholar 

  • Yukawa J, Akimoto K (2006) Influence of synchronization between adult emergence and host plant phenology on the population density of Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) inducing leaf galls on Neolitsea sericea (Lauraceae). Popul Ecol 48:13–21

    Google Scholar 

  • Zalucki MP, van Klinken RD (2006) Predicting population dynamics of weed biological control agents: science or gazing into crystal balls? Aust J Entomol 45:331–344

    Google Scholar 

  • Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 We are grateful to Andrew Liebhold and Trevor Fenning for helpful comments on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Tobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tobin, P.C., Parry, D., Aukema, B.H. (2014). The Influence of Climate Change on Insect Invasions in Temperate Forest Ecosystems. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_12

Download citation

Publish with us

Policies and ethics

Navigation