General Management of Cerebellar Disorders: An Overview

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Cerebellar disorders primarily effect motor functions and can lead to significant and serious restrictions in activities of daily living. Possibilities for medical interventions are rare and limited to specific diseases and symptoms. Furthermore, motor rehabilitation for patients suffering from cerebellar damage is challenging, since the cerebellum is known to play an important role for the execution as well as for the (re)learning of precise movements.

This chapter reviews the state of the art in medical intervention and rehabilitation, focusing on presenting new results on motor rehabilitation in cerebellar disease. Recent studies indicate that even in the case of degenerative cerebellar diseases intensive and continuous motor training can reduce ataxia symptoms and increase motor performance relevant to daily living.

In addition, current studies in the area of motor learning – in combination with modern imaging techniques – in cerebellar disease are described. These results offer promising perspectives for a deeper understanding of remaining motor learning capacities in cerebellar disease, and thus might help in the future to optimize motor rehabilitation for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Alvina K, Khodakhah K (2010) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268

    Article  PubMed  CAS  Google Scholar 

  • Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41:973–979

    Article  PubMed  CAS  Google Scholar 

  • Balliet R, Harbst KB, Kim D, Stewart RV (1987) Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia. Int Rehabil Med 8:148–153

    PubMed  CAS  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    PubMed  CAS  Google Scholar 

  • Bastian AJ (1997) Mechanisms of ataxia. Phys Ther 77:672–675

    PubMed  CAS  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21(4):596–601

    Article  PubMed  CAS  Google Scholar 

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    PubMed  CAS  Google Scholar 

  • Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132:156–171

    Article  PubMed  Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572

    Article  PubMed  CAS  Google Scholar 

  • Brandauer B, Hermsdorfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D (2008) Impairments of prehension kinematics and gras** forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119:2528–2537

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Whitney SL, Marchetti GF, Wrisley DM, Furman JM (2006) Physical therapy for central vestibular dysfunction. Arch Phys Med Rehabil 87:76–81

    Article  PubMed  Google Scholar 

  • Burk K (2007) Cognition in hereditary ataxia. Cerebellum 6:280–286

    Article  PubMed  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    PubMed  CAS  Google Scholar 

  • Cassidy E, Kilbridge C, Holland A (2009) Management of the Ataxias: towards best clinical practice – Physiotherapy supplement. Ataxia UK, London

    Google Scholar 

  • Cernak K, Stevens V, Price R, Shumway-Cook A (2008) Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 88:88–97

    Article  PubMed  Google Scholar 

  • Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive control of saccades via internal feedback. J Neurosci 28:2804–2813

    Article  PubMed  CAS  Google Scholar 

  • Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284

    Article  PubMed  Google Scholar 

  • Crowdy KA, Kaur-Mann D, Cooper HL, Mansfield AG, Offord JL, Marple-Horvat DE (2002) Rehearsal by eye movement improves visuomotor performance in cerebellar patients. Exp Brain Res 146:244–247

    Article  PubMed  CAS  Google Scholar 

  • Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T (2009) The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp 30:4048–4053

    Article  PubMed  Google Scholar 

  • Deuschl G, Toro C, Zeffiro T, Massaquoi S, Hallett M (1996) Adaptation motor learning of arm movements in patients with cerebellar disease. J Neurol Neurosurg Psychiatry 60:515–519

    Article  PubMed  CAS  Google Scholar 

  • Di Prospero NA, Baker A, Jeffries N, Fischbeck KH (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6:878–886

    Article  PubMed  CAS  Google Scholar 

  • Diener HC, Dichgans J (1996) Cerebellar and spinocerebellar gait disorders. In: Bronstein AM, Brandt T, Woollacott MH (eds) Clinical disorders of posture and gait. Arnold, London, pp 147–155

    Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312

    Article  PubMed  CAS  Google Scholar 

  • Du AX, Cuzzocreo JL, Landman BA, Zee DS, Prince JL, Ying SH (2010) Diffusion tensor imaging reveals disease-specific deep cerebellar nuclear changes in cerebellar degeneration. J Neurol 257:1406–1408

    Article  PubMed  Google Scholar 

  • Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Fogel BL, Perlman S (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 6:245–257

    Article  PubMed  CAS  Google Scholar 

  • Freund JE, Stetts DM (2010) Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract 26:447–458

    Article  PubMed  Google Scholar 

  • Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, Gao Y, Flora A, Shaw C, Orr HT, Zoghbi HY (2011) Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 334:690–693

    Article  PubMed  CAS  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    PubMed  CAS  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29:9115–9122

    Article  PubMed  CAS  Google Scholar 

  • Gialanella B, Bertolinelli M, Monguzzi V, Santoro R (2005) Walking and disability after rehabilitation in patients with cerebellar stroke. Minerva Med 96:373–378

    PubMed  CAS  Google Scholar 

  • Gill-Body KM, Popat RA, Parker SW, Krebs DE (1997) Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther 77:534–552

    PubMed  CAS  Google Scholar 

  • Gillen G (2002) Improving mobility and community access in an adult with ataxia. Am J Occup Ther 56:462–466

    Article  PubMed  Google Scholar 

  • Glasauer S, Kalla R, Buttner U, Strupp M, Brandt T (2005) 4-aminopyridine restores visual ocular motor function in upbeat nystagmus. J Neurol Neurosurg Psychiatry 76:451–453

    Article  PubMed  CAS  Google Scholar 

  • Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P (2008) Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci 27:132–144

    Article  PubMed  Google Scholar 

  • Griggs RC, Moxley RT 3rd, Lafrance RA, McQuillen J (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28:1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Ilg W, Golla H, Thier P, Giese MA (2007) Specific influences of cerebellar dysfunctions on gait. Brain 130:786–798

    Article  PubMed  Google Scholar 

  • Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927

    Article  PubMed  CAS  Google Scholar 

  • Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73:1823–1830

    Article  PubMed  CAS  Google Scholar 

  • Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M (2010) Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 25:2239–2246

    Article  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2010) A role of cerebellum in maximizing rewards during visuomotor adaptation task. In: Annual meeting of the Society for Neuroscience, 2010. San Diego, CA: Society for Neuroscience

    Google Scholar 

  • Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C, Schols L, Rakowicz M, Rola R, Zdzienicka E, Schmitz-Hubsch T, Fancellu R, Mariotti C, Tomasello C, Baliko L, Melegh B, Filla A, Rinaldi C, van de Warrenburg BP, Verstappen CC, Szymanski S, Berciano J, Infante J, Timmann D, Boesch S, Hering S, Depondt C, Pandolfo M, Kang JS, Ratzka S, Schulz J, Tezenas du Montcel S, Klockgether T (2011) The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: A 2-year follow-up study. Neurology 77(11):1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 21(8):1901–1909

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kearney M, Orrell RW, Fahey M, Pandolfo M (2009) Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane database of systematic reviews, John Wiley & Sons, Ltd, Chichester, 4:

    Google Scholar 

  • Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, Kurina A, Furie KL (2001) Functional recovery after rehabilitation for cerebellar stroke. Stroke 32:530–534

    Article  PubMed  CAS  Google Scholar 

  • Kiresuk TJ, Smith A, Cardillo JEE (1994) Goal attainment scaling: applications, theory and measurement. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Kleim JA, Markham JA, Vij K, Freese JL, Ballard DH, Greenough WT (2007) Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav Brain Res 178:244–249

    Article  PubMed  Google Scholar 

  • Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028:92–104

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T (2010) Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9:94–104

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T (2011) Update on degenerative ataxias. Curr Opin Neurol 24:339–345

    Article  PubMed  Google Scholar 

  • Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441

    Article  PubMed  Google Scholar 

  • Lagedrost SJ, Sutton MS, Cohen MS, Satou GM, Kaufman BD, Perlman SL, Rummey C, Meier T, Lynch DR (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161:639–645; e631

    Article  PubMed  CAS  Google Scholar 

  • Lang CE, Bastian AJ (2002) Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 87:1336–1347

    PubMed  Google Scholar 

  • Larsen JO, Skalicky M, Viidik A (2000) Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 428:213–222

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67:941–947

    Article  PubMed  Google Scholar 

  • Maeshima S, Osawa A (2007) Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Inj 21:877–883

    Article  PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Choub A, Siciliano G (2010) Current and emerging treatment options in the management of Friedreich ataxia. Neuropsychiatric disease and treatment 6:491–499

    Article  PubMed  CAS  Google Scholar 

  • Manto M (2009) Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil 6:10

    Article  PubMed  Google Scholar 

  • Manto M, Godaux E, Jacquy J (1995) Detection of silent cerebellar lesions by increasing the inertial load of the moving hand. Annu Neurol 37:344–350

    Article  CAS  Google Scholar 

  • Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679

    Article  PubMed  CAS  Google Scholar 

  • Marsden J, Harris C (2011) Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil 25:195–216

    Article  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Martin CL, Tan D, Bragge P, Bialocerkowski A (2009) Effectiveness of physiotherapy for adults with cerebellar dysfunction: a systematic review. Clin Rehabil 23:15–26

    Article  PubMed  CAS  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    Article  PubMed  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    Article  PubMed  CAS  Google Scholar 

  • Mills RJ, Yap L, Young CA (2007) Treatment for ataxia in multiple sclerosis. Cochrane database of systematic reviews. John Wiley & Sons, Ltd, Chichester, 1:

    Google Scholar 

  • Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26:9107–9116

    Article  PubMed  CAS  Google Scholar 

  • Morton SM, Bastian AJ (2007) Mechanisms of cerebellar gait ataxia. Cerebellum 6:79–86

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Marquardt C, Fuchs HH (2002) Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res 145:28–39

    Article  PubMed  Google Scholar 

  • Panturin E (1997) Maximizing functional recovery. Phys Ther 77:1112–1113

    PubMed  CAS  Google Scholar 

  • Paulsen EK, Friedman LS, Myers LM, Lynch DR (2010) Health-related quality of life in children with Friedreich ataxia. Pediatr Neurol 42:335–337

    Article  PubMed  Google Scholar 

  • Pierscianek D, Frings M, Bultmann U, Fritsche N, Gizewski ER, Floβdorf A, Timmann D, Maschke M (2007) Rehabilitation of cognitive impairment in patients with acute cerebellar stroke. Israel society for neuroscience, 16th annual meeting, Eilat, 25–27.11.2007. Neural Plasticity 14:86

    Google Scholar 

  • Platz T, Winter T, Muller N, Pinkowski C, Eickhof C, Mauritz KH (2001) Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil 82:961–968

    Article  PubMed  CAS  Google Scholar 

  • Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O (2009) Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 101:1961–1971

    Article  PubMed  CAS  Google Scholar 

  • Revuelta GJ, Wilmot GR (2010) Therapeutic interventions in the primary hereditary ataxias. Curr Treat Options Neurol 12:257–273

    Article  PubMed  Google Scholar 

  • Richards L, Senesac C, McGuirk T, Woodbury M, Howland D, Davis S, Patterson T (2008) Response to intensive upper extremity therapy by individuals with ataxia from stroke. Top Stroke Rehabil 15:262–271

    Article  PubMed  Google Scholar 

  • Richter S, Dimitrova A, Maschke M, Gizewski E, Beck A, Aurich V, Timmann D (2005) Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27

    Article  PubMed  Google Scholar 

  • Ristori G, Romano S, Visconti A, Cannoni S, Spadaro M, Frontali M, Pontieri FE, Vanacore N, Salvetti M (2010) Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74:839–845

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720

    Article  PubMed  Google Scholar 

  • Schmitz-Hübsch T, Coudert M, Giunti P, Globas C, Baliko L, Fancellu R, Mariotti C, Filla A, Rakowicz M, Charles P, Ribai P, Szymanski S, Infante J, van de Warrenburg BP, Durr A, Timmann D, Boesch S, Rola R, Depondt C, Schols L, Zdzienicka E, Kang JS, Ratzka S, Kremer B, Schulz JB, Klopstock T, Melegh B, du Montcel ST, Klockgether T (2010) Self-rated health status in spinocerebellar ataxia–results from a European multicenter study. Mov Disord 25:587–595

    Article  PubMed  Google Scholar 

  • Schniepp R, Wuehr M, Ackl N, Danek A, Brandt T, Strupp M, Jahn K (2011) 4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA 1A mutation. J Neurol 258(9):1708–1711

    Article  PubMed  Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER, Timmann D (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51

    Article  PubMed  CAS  Google Scholar 

  • Schoch B, Regel JP, Frings M, Gerwig M, Maschke M, Neuhauser M, Timmann D (2007) Reliability and validity of ICARS in focal cerebellar lesions. Mov Disord 22(15):2162–2169

    Article  PubMed  Google Scholar 

  • Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    Article  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Boesch S, Burk K, Durr A, Giunti P, Mariotti C, Pousset F, Schols L, Vankan P, Pandolfo M (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev 5:222–234

    Google Scholar 

  • Schulz JB, Borkert J, Wolf S, Schmitz-Hubsch T, Rakowicz M, Mariotti C, Schols L, Timmann D, van de Warrenburg B, Durr A, Pandolfo M, Kang JS, Mandly AG, Nagele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser TK (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168

    Article  PubMed  Google Scholar 

  • Schweizer TA, Levine B, Rewilak D, O’Connor C, Turner G, Alexander MP, Cusimano M, Manly T, Robertson IH, Stuss DT (2008) Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabil Neural Repair 22:72–77

    PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  CAS  Google Scholar 

  • Spencer RM, Ivry RB (2009) Sequence learning is preserved in individuals with cerebellar degeneration when the movements are directly cued. J Cogn Neurosci 21:1302–1310

    Article  PubMed  Google Scholar 

  • Sprenger A, Zils E, Rambold H, Sander T, Helmchen C (2005) Effect of 3,4-diaminopyridine on the postural control in patients with downbeat nystagmus. Ann N Y Acad Sci 1039:395–403

    Article  PubMed  CAS  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  PubMed  CAS  Google Scholar 

  • Strupp M, Brandt T (2009) Current treatment of vestibular, ocular motor disorders and nystagmus. Ther Adv Neurol Dis 2:223–239

    Article  Google Scholar 

  • Strupp M, Schuler O, Krafczyk S, Jahn K, Schautzer F, Buttner U, Brandt T (2003) Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 61:165–170

    Article  PubMed  CAS  Google Scholar 

  • Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77:269–275

    Article  PubMed  CAS  Google Scholar 

  • Swain RA, Kerr AL, Thompson RF (2011) The cerebellum: a neural system for the study of reinforcement learning. Front Behav Neurosci 5:8

    Article  PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893

    Article  PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, Pidikiti R (1999) Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation–a clinical review. J Rehabil Res Dev 36:237–251

    PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, Morris DM (2003) Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am 14:S77–S91,ix

    Article  PubMed  Google Scholar 

  • Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9(4):580–586

    Article  PubMed  Google Scholar 

  • Thach WT, Bastian AJ (2004) Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res 143:353–366

    Article  PubMed  Google Scholar 

  • Timmann D, Daum I (2010) How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol 23:81–100

    PubMed  Google Scholar 

  • Topka H, Konczak J, Dichgans J (1998) Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics. Exp Brain Res 119:483–492

    Article  PubMed  CAS  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, BenHamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F, Carrillo-Fumero R (2009) Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord 24:1111–1124

    Article  PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Tsunemi T, Ishikawa K, Tsukui K, Sumi T, Kitamura K, Mizusawa H (2010) The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 292:81–84

    Article  PubMed  CAS  Google Scholar 

  • Urbscheit N, Oremland B (1995) Cerebellar dysfunction. In: Umphred D (ed) Neurological rehabilitation. Mosby, St. Louis, pp 657–680

    Google Scholar 

  • van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR (2005) Falls in degenerative cerebellar ataxias. Mov Disord 20:497–500

    Article  PubMed  Google Scholar 

  • Vaz DV, Schettino Rde C, Rolla de Castro TR, Teixeira VR, Cavalcanti Furtado SR, de Mello Figueiredo E (2008) Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil 22:234–241

    Article  PubMed  Google Scholar 

  • Vergaro E, Squeri V, Brichetto G, Casadio M, Morasso P, Solaro C, Sanguineti V (2011) Adaptive robot training for the treatment of incoordination in multiple sclerosis. J Neuroeng Rehabil 7:37

    Article  Google Scholar 

  • Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43:279–291

    PubMed  CAS  Google Scholar 

  • Weimar C, Weber C, Wagner M, Busse O, Haberl RL, Lauterbach KW, Diener HC (2003) Management patterns and health care use after intracerebral hemorrhage. A cost-of-illness study from a societal perspective in Germany. Cerebrovascular diseases (Basel, Switzerland) 15:29–36

    Google Scholar 

  • Werner S, Bock O, Timmann D (2009) The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res 193:189–196

    Article  PubMed  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104:125–132

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

  • Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R (2009) Cerebellar contributions to adaptive control of saccades in humans. J Neurosci 29:12930–12939

    Article  PubMed  CAS  Google Scholar 

  • Ying SH, Landman BA, Chowdhury S, Sinofsky AH, Gambini A, Mori S, Zee DS, Prince JL (2009) Orthogonal diffusion-weighted MRI measures distinguish region-specific degeneration in cerebellar ataxia subtypes. J Neurol 256:1939–1942

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Ilg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ilg, W., Timmann, D. (2013). General Management of Cerebellar Disorders: An Overview. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_105

Download citation

Publish with us

Policies and ethics

Navigation