General Management of Cerebellar Disorders: An Overview

  • Reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 321 Accesses

Abstract

Cerebellar disorders primarily affect motor functions and can lead to significant and serious restrictions in activities of daily living. Possibilities for medical interventions are rare and limited to specific diseases and symptoms. Furthermore, motor rehabilitation for patients suffering from cerebellar damage is challenging, since the cerebellum is known to play an important role for the execution as well as for the (re)-learning of precise movements.

This chapter reviews the current state of the art in medical intervention and rehabilitation, focusing on presenting new results on motor rehabilitation in cerebellar disease. Recent studies indicate that even in the case of degenerative cerebellar diseases, intensive and continuous motor training can reduce ataxia symptoms and increase motor performance relevant to daily living. In addition, current studies in the area of motor learning – in combination with modern imaging techniques – in cerebellar disease are described. These results offer promising perspectives for a deeper understanding of remaining motor learning capacities in cerebellar disease and thus might help in the future to optimize motor rehabilitation for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19(12):1023–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvina K, Khodakhah K (2010) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30(21):7258–7268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41(7):973–979

    CAS  PubMed  Google Scholar 

  • Balliet R, Harbst KB, Kim D, Stewart RV (1987) Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia. Int Rehabil Med 8(4):148–153

    CAS  PubMed  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19(24):10931–10939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian AJ (1997) Mechanisms of ataxia. Phys Ther 77(6):672–675

    CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649

    CAS  PubMed  Google Scholar 

  • Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21(4):596–601. https://doi.org/10.1016/j.conb.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76(1):492–509

    CAS  PubMed  Google Scholar 

  • Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1): 156–171

    PubMed  Google Scholar 

  • Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, Borroni B (2017) Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul 10(2):242–250. https://doi.org/10.1016/j.brs.2016.11.001

    Article  PubMed  Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–5572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Marien P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K (2016) Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15(3):369–391. https://doi.org/10.1007/s12311-015-0687-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonney H, De Silva R, Giunti P, Greenfield J, Hunt B (2016) Management of the ataxias: towards best clinical practice, 3rd edn. Ataxia UK, London

    Google Scholar 

  • Bonni S, Ponzo V, Caltagirone C, Koch G (2014) Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol 29(1):41–45

    PubMed  PubMed Central  Google Scholar 

  • Bultmann U, Pierscianek D, Gizewski ER, Schoch B, Fritsche N, Timmann D, Maschke M, Frings M (2014) Functional recovery and rehabilitation of postural impairment and gait ataxia in patients with acute cerebellar stroke. Gait Posture 39(1):563–569. https://doi.org/10.1016/j.gaitpost.2013.09.011

    Article  PubMed  Google Scholar 

  • Bunn LM, Marsden JF, Giunti P, Day BL (2014) Training balance with opto-kinetic stimuli in the home: a randomized controlled feasibility study in people with pure cerebellar disease. Clin Rehabil. https://doi.org/10.1177/0269215514539336

  • Burciu RG, Fritsche N, Granert O, Schmitz L, Sponemann N, Konczak J, Theysohn N, Gerwig M, van Eimeren T, Timmann D (2013) Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci 33(10):4594–4604. https://doi.org/10.1523/JNEUROSCI.3381-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk K (2007) Cognition in hereditary ataxia. Cerebellum 6(3):280–286

    PubMed  Google Scholar 

  • Cano SJ, Riazi A, Schapira AH, Cooper JM, Hobart JC (2009) Friedreich’s ataxia impact scale: a new measure striving to provide the flexibility required by today’s studies. Mov Disord 24(7):984–992. https://doi.org/10.1002/mds.22420

    Article  PubMed  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21(15):5678–5684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cernak K, Stevens V, Price R, Shumway-Cook A (2008) Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 88(1):88–97

    PubMed  Google Scholar 

  • Claassen J, Feil K, Bardins S, Teufel J, Spiegel R, Kalla R, Schneider E, Jahn K, Schniepp R, Strupp M (2013) Dalfampridine in patients with downbeat nystagmus–an observational study. J Neurol 260(8):1992–1996. https://doi.org/10.1007/s00415-013-6911-5

    Article  CAS  PubMed  Google Scholar 

  • Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103(4):2275–2284

    PubMed  PubMed Central  Google Scholar 

  • Crowdy KA, Kaur-Mann D, Cooper HL, Mansfield AG, Offord JL, Marple-Horvat DE (2002) Rehearsal by eye movement improves visuomotor performance in cerebellar patients. Exp Brain Res 146(2):244–247

    CAS  PubMed  Google Scholar 

  • Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T (2009) The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp 30(12):4048–4053

    PubMed  PubMed Central  Google Scholar 

  • Deuschl G, Toro C, Zeffiro T, Massaquoi S, Hallett M (1996) Adaptation motor learning of arm movements in patients with cerebellar disease. J Neurol Neurosurg Psychiatry 60(5):515–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Prospero NA, Baker A, Jeffries N, Fischbeck KH (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6(10):878–886

    PubMed  Google Scholar 

  • Diener HC, Dichgans J (1996) Cerebellar and spinocerebellar gait disorders. In: Bronstein AM, Brandt T, Woollacott MH (eds) Clinical disorders of posture and gait. Arnold, London, pp 147–155

    Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739

    CAS  PubMed  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    CAS  PubMed  Google Scholar 

  • Du AX, Cuzzocreo JL, Landman BA, Zee DS, Prince JL, Ying SH (2010) Diffusion tensor imaging reveals disease-specific deep cerebellar nuclear changes in cerebellar degeneration. J Neurol 257(8):1406–1408

    PubMed  PubMed Central  Google Scholar 

  • Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335(16):1169–1175

    CAS  PubMed  Google Scholar 

  • Feil K, Adrion C, Teufel J, Bosch S, Claassen J, Giordano I, Hengel H, Jacobi H, Klockgether T, Klopstock T, Nachbauer W, Schols L, Stendel C, Uslar E, van de Warrenburg B, Berger I, Naumann I, Bayer O, Muller HH, Mansmann U, Strupp M (2017) Effects of acetyl-DL-leucine on cerebellar ataxia (ALCAT trial): study protocol for a multicenter, multinational, randomized, double-blind, placebo-controlled, crossover phase III trial. BMC Neurol 17(1):7. https://doi.org/10.1186/s12883-016-0786-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel BL (2018) Autosomal-recessive cerebellar ataxias. Handb Clin Neurol 147:187–209. https://doi.org/10.1016/B978-0-444-63233-3.00013-0

    Article  PubMed  Google Scholar 

  • Fogel BL, Perlman S (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 6(3):245–257

    CAS  PubMed  Google Scholar 

  • Fonteyn EM, Heeren A, Engels JJ, Boer JJ, van de Warrenburg BP, Weerdesteyn V (2014) Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture 40(1):247–251. https://doi.org/10.1016/j.gaitpost.2014.04.190

    Article  PubMed  Google Scholar 

  • Freund JE, Stetts DM (2010) Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract 26(7):447–458

    PubMed  Google Scholar 

  • Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, Gao Y, Flora A, Shaw C, Orr HT, Zoghbi HY (2011) Exercise and genetic rescue of SCA1 via the transcriptional repressor capicua. Science 334(6056):690–693. https://doi.org/10.1126/science.1212673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A (2017) Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 102:49–59. https://doi.org/10.1016/j.nbd.2017.02.005

    Article  PubMed  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31

    CAS  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gialanella B, Bertolinelli M, Monguzzi V, Santoro R (2005) Walking and disability after rehabilitation in patients with cerebellar stroke. Minerva Med 96(5):373–378

    CAS  PubMed  Google Scholar 

  • Gill-Body KM, Popat RA, Parker SW, Krebs DE (1997) Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther 77(5):534–552

    CAS  PubMed  Google Scholar 

  • Gillen G (2002) Improving mobility and community access in an adult with ataxia. Am J Occup Ther 56(4):462–466

    PubMed  Google Scholar 

  • Giordano I, Bogdanow M, Jacobi H, Jahn K, Minnerop M, Schoels L, Synofzik M, Teufel J, Klockgether T (2013) Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol 260(8):2175–2176. https://doi.org/10.1007/s00415-013-7029-5

    Article  CAS  PubMed  Google Scholar 

  • Giordano I, Harmuth F, Jacobi H, Paap B, Vielhaber S, Machts J, Schols L, Synofzik M, Sturm M, Tallaksen C, Wedding IM, Boesch S, Eigentler A, van de Warrenburg B, van Gaalen J, Kamm C, Dudesek A, Kang JS, Timmann D, Silvestri G, Masciullo M, Klopstock T, Neuhofer C, Ganos C, Filla A, Bauer P, Tezenas du Montcel S, Klockgether T (2017) Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 89(10):1043–1049. https://doi.org/10.1212/WNL.0000000000004311

    Article  PubMed  Google Scholar 

  • Glasauer S, Kalla R, Buttner U, Strupp M, Brandt T (2005) 4-aminopyridine restores visual ocular motor function in upbeat nystagmus. J Neurol Neurosurg Psychiatry 76(3):451–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griggs RC, Moxley RT 3rd, Lafrance RA, McQuillen J (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28(12):1259–1264

    CAS  PubMed  Google Scholar 

  • Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U (2014) Non-invasive cerebellar stimulation–a consensus paper. Cerebellum 13(1):121–138. https://doi.org/10.1007/s12311-013-0514-7

    Article  CAS  PubMed  Google Scholar 

  • Hatakenaka M, Miyai I, Mihara M, Yagura H, Hattori N (2011) Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia. Neurorehabil Neural Repair 26:293

    PubMed  Google Scholar 

  • Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD (2018) The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141(1):248–270. https://doi.org/10.1093/brain/awx317

    Article  PubMed  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Google Scholar 

  • Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72(2):479–493

    CAS  PubMed  Google Scholar 

  • Hulst T, van der Geest JN, Thurling M, Goericke S, Frens MA, Timmann D, Donchin O (2015) Ageing shows a pattern of cerebellar degeneration analogous, but not equal, to that in patients suffering from cerebellar degenerative disease. NeuroImage 116:196–206. https://doi.org/10.1016/j.neuroimage.2015.03.084

    Article  PubMed  Google Scholar 

  • Hulst T, John L, Kuper M, van der Geest JN, Goricke SL, Donchin O, Timmann D (2017) Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force-field reaching adaptation. J Neurophysiol 118(2):732–748. https://doi.org/10.1152/jn.00808.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilg W, Timmann D (2013) Gait ataxia-specific cerebellar influences and their rehabilitation. Mov Disord 28(11):1566–1575. https://doi.org/10.1002/mds.25558

    Article  PubMed  Google Scholar 

  • Ilg W, Golla H, Thier P, Giese MA (2007) Specific influences of cerebellar dysfunctions on gait. Brain 130(3):786–798. https://doi.org/10.1093/brain/awl376

    Article  PubMed  Google Scholar 

  • Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131(Pt 11):2913–2927

    CAS  PubMed  Google Scholar 

  • Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73(22):1823–1830

    CAS  PubMed  Google Scholar 

  • Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M (2010) Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 25(13):2239–2246. https://doi.org/10.1002/mds.23222

    Article  PubMed  Google Scholar 

  • Ilg W, Schatton C, Schicks J, Giese MA, Schols L, Synofzik M (2012) Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 79(20):2056–2060. https://doi.org/10.1212/WNL.0b013e3182749e67

    Article  PubMed  Google Scholar 

  • Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, Feil K, Kalla R, Miyai I, Nachbauer W, Schols L, Strupp M, Synofzik M, Teufel J, Timmann D (2014) Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13(2):248–268. https://doi.org/10.1007/s12311-013-0531-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, Timmann D, Giese M, Schols L, Synofzik M (2016) Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord 31(12):1891–1900. https://doi.org/10.1002/mds.26835

    Article  PubMed  Google Scholar 

  • Im SJ, Kim YH, Kim KH, Han JW, Yoon SJ, Park JH (2017) The effect of a task-specific locomotor training strategy on gait stability in patients with cerebellar disease: a feasibility study. Disabil Rehabil 39(10):1002–1008. https://doi.org/10.1080/09638288.2016.1177124

    Article  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2010) A role of cerebellum in maximizing rewards during visuomotor adaptation task. Paper presented at the Annual meeting of the Society for Neuroscience, 2010, San Diego

    Google Scholar 

  • Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C, Schols L, Rakowicz M, Rola R, Zdzienicka E, Schmitz-Hubsch T, Fancellu R, Mariotti C, Tomasello C, Baliko L, Melegh B, Filla A, Rinaldi C, van de Warrenburg BP, Verstappen CC, Szymanski S, Berciano J, Infante J, Timmann D, Boesch S, Hering S, Depondt C, Pandolfo M, Kang JS, Ratzka S, Schulz J, Tezenas du Montcel S, Klockgether T (2011) The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 77(11):1035–1041. https://doi.org/10.1212/WNL.0b013e31822e7ca0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, Rakowicz M, Sulek A, Durr A, Charles P, Filla A, Antenora A, Schols L, Schicks J, Infante J, Kang JS, Timmann D, Di Fabio R, Masciullo M, Baliko L, Melegh B, Boesch S, Burk K, Peltz A, Schulz JB, Dufaure-Gare I, Klockgether T (2013) Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 12(7):650–658. https://doi.org/10.1016/S1474-4422(13)70104-2

    Article  PubMed  Google Scholar 

  • Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, Panzeri M, Rakowicz M, Sulek A, Sobanska A, Schmitz-Hubsch T, Schols L, Hengel H, Baliko L, Melegh B, Filla A, Antenora A, Infante J, Berciano J, van de Warrenburg BP, Timmann D, Szymanski S, Boesch S, Kang JS, Pandolfo M, Schulz JB, Molho S, Diallo A, Klockgether T (2015) Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 14(11):1101–1108. https://doi.org/10.1016/S1474-4422(15)00202-1

    Article  PubMed  Google Scholar 

  • Jalali R, Miall RC, Galea JM (2017) No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation. J Neurophysiol 118(2):655–665. https://doi.org/10.1152/jn.00896.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. https://doi.org/10.1093/cercor/bhq263

  • **nah HA, Albanese A, Bhatia KP, Cardoso F, Da Prat G, de Koning TJ, Espay AJ, Fung V, Garcia-Ruiz PJ, Gershanik O, Jankovic J, Kaji R, Kotschet K, Marras C, Miyasaki JM, Morgante F, Munchau A, Pal PK, Rodriguez Oroz MC, Rodriguez-Violante M, Schols L, Stamelou M, Tijssen M, Uribe Roca C, de la Cerda A, Gatto EM, International Parkinson’s Disease Movement Disorders Society Task Force on Rare Movement D (2018) Treatable inherited rare movement disorders. Mov Disord 33(1):21–35. https://doi.org/10.1002/mds.27140

    Article  CAS  PubMed  Google Scholar 

  • John L, Kuper M, Hulst T, Timmann D, Hermsdorfer J (2017) Effects of transcranial direct current stimulation on grip force control in patients with cerebellar degeneration. Cerebellum Ataxias 4:15. https://doi.org/10.1186/s40673-017-0072-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, Prince JL, Onyike CU (2017) Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 140(3):707–720. https://doi.org/10.1093/brain/aww327

    Article  PubMed  Google Scholar 

  • Kaut O, Jacobi H, Coch C, Prochnicki A, Minnerop M, Klockgether T, Wullner U (2014) A randomized pilot study of stochastic vibration therapy in spinocerebellar ataxia. Cerebellum 13(2):237–242. https://doi.org/10.1007/s12311-013-0532-5

    Article  CAS  PubMed  Google Scholar 

  • Keith RA, Granger CV, Hamilton BB, Sherwin FS (1987) The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1:6–18

    CAS  PubMed  Google Scholar 

  • Keller JL, Bastian AJ (2014) A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabil Neural Repair 28(8):770–778. https://doi.org/10.1177/1545968314522350

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, Kurina A, Furie KL (2001) Functional recovery after rehabilitation for cerebellar stroke. Stroke 32(2):530–534

    CAS  PubMed  Google Scholar 

  • Kim WS, Jung SH, Oh MK, Min YS, Lim JY, Paik NJ (2014) Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: a pilot study. J Rehabil Med 46(5):418–423. https://doi.org/10.2340/16501977-1802

    Article  PubMed  Google Scholar 

  • Kleim JA, Markham JA, Vij K, Freese JL, Ballard DH, Greenough WT (2007) Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav Brain Res 178(2):244–249

    PubMed  PubMed Central  Google Scholar 

  • Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028(1):92–104

    CAS  PubMed  Google Scholar 

  • Klockgether T (2010) Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 9(1):94–104. https://doi.org/10.1016/S1474-4422(09)70305-9

    Article  CAS  PubMed  Google Scholar 

  • Klockgether T (2011) Update on degenerative ataxias. Curr Opin Neurol 24(4):339–345

    PubMed  Google Scholar 

  • Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128(Pt 6):1428–1441

    PubMed  Google Scholar 

  • Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13(1):151–177. https://doi.org/10.1007/s12311-013-0511-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtzer I, Trautman P, Rasquinha RJ, Bhanpuri NH, Scott SH, Bastian AJ (2013) Cerebellar damage diminishes long-latency responses to multijoint perturbations. J Neurophysiol 109(8):2228–2241. https://doi.org/10.1152/jn.00145.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagedrost SJ, Sutton MS, Cohen MS, Satou GM, Kaufman BD, Perlman SL, Rummey C, Meier T, Lynch DR (2011) Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 161(3):639–645.e631

    CAS  PubMed  Google Scholar 

  • Lang CE, Bastian AJ (2002) Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 87(3):1336–1347

    PubMed  Google Scholar 

  • Larsen JO, Skalicky M, Viidik A (2000) Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 428(2):213–222

    CAS  PubMed  Google Scholar 

  • Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP, Chan PK, Mohammad T, Mauri M, Tam KT, Leiper J, Piper S, Ramesh A, Parkinson MH, Huson L, Giunti P, Festenstein R (2014) Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 384(9942):504–513. https://doi.org/10.1016/S0140-6736(14)60382-2

    Article  CAS  PubMed  Google Scholar 

  • Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67(8):941–947

    PubMed  Google Scholar 

  • Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85(1):96–103. https://doi.org/10.1212/WNL.0000000000001711

    Article  PubMed  Google Scholar 

  • Maeshima S, Osawa A (2007) Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Inj 21(8):877–883

    PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Choub A, Siciliano G (2010) Current and emerging treatment options in the management of Friedreich ataxia. Neuropsychiatr Dis Treat 6:491–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manto M (2009) Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil 6:10

    PubMed  PubMed Central  Google Scholar 

  • Manto M, Godaux E, Jacquy J (1995) Detection of silent cerebellar lesions by increasing the inertial load of the moving hand. Ann Neurol 37:344–350

    CAS  PubMed  Google Scholar 

  • Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60(10): 1676–1679

    CAS  PubMed  Google Scholar 

  • Marquer A, Barbieri G, Perennou D (2014) The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann Phys Rehabil Med 57(2):67–78. https://doi.org/10.1016/j.rehab.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  • Marsden J, Harris C (2011) Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil 25(3):195–216

    PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    PubMed  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91(1):230–238

    PubMed  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5(11):e316

    PubMed  PubMed Central  Google Scholar 

  • Milne SC, Corben LA, Roberts M, Murphy A, Tai G, Georgiou-Karistianis N, Yiu EM, Delatycki MB (2017) Can rehabilitation improve the health and well-being in Friedreich’s ataxia: a randomized controlled trial? Clin Rehabil. https://doi.org/10.1177/0269215517736903

  • Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, Sobue G, Nishizawa M (2012) Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 26(5):515–522

    PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10(3):247–259

    PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morton SM, Bastian AJ (2007) Mechanisms of cerebellar gait ataxia. Cerebellum 6(1):79–86

    PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2009) Can rehabilitation help ataxia? Neurology 73(22):1818–1819

    PubMed  Google Scholar 

  • Paulsen EK, Friedman LS, Myers LM, Lynch DR (2010) Health-related quality of life in children with Friedreich ataxia. Pediatr Neurol 42(5):335–337

    PubMed  Google Scholar 

  • Pelz JO, Fricke C, Saur D, Classen J (2015) Failure to confirm benefit of acetyl-DL-leucine in degenerative cerebellar ataxia: a case series. J Neurol 262(5):1373–1375. https://doi.org/10.1007/s00415-015-7734-3

    Article  PubMed  Google Scholar 

  • Pierscianek D, Frings M, Bultmann U, Fritsche N, Gizewski E, Flossdorf A, Timmann D, Maschke M (2007) Rehabilitation of cognitive impairment in patients with acute cerebellar stroke. Neural Plasticity. Article ID 30585, 68

    Google Scholar 

  • Platz T, Winter T, Muller N, Pinkowski C, Eickhof C, Mauritz KH (2001) Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil 82(7):961–968

    CAS  PubMed  Google Scholar 

  • Pozzi NG, Minafra B, Zangaglia R, De Marzi R, Sandrini G, Priori A, Pacchetti C (2014) Transcranial direct current stimulation (tDCS) of the cortical motor areas in three cases of cerebellar ataxia. Cerebellum 13(1):109–112. https://doi.org/10.1007/s12311-013-0524-5

    Article  PubMed  Google Scholar 

  • Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O (2009) Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 101(4):1961–1971

    CAS  PubMed  Google Scholar 

  • Revuelta GJ, Wilmot GR (2010) Therapeutic interventions in the primary hereditary ataxias. Curr Treat Options Neurol 12(4):257–273

    PubMed  Google Scholar 

  • Richards L, Senesac C, McGuirk T, Woodbury M, Howland D, Davis S, Patterson T (2008) Response to intensive upper extremity therapy by individuals with ataxia from stroke. Top Stroke Rehabil 15(3):262–271. https://doi.org/10.1310/tsr1503-262

    Article  PubMed  Google Scholar 

  • Richter S, Dimitrova A, Maschke M, Gizewski E, Beck A, Aurich V, Timmann D (2005) Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54(1):23–27

    PubMed  Google Scholar 

  • Ristori G, Romano S, Visconti A, Cannoni S, Spadaro M, Frontali M, Pontieri FE, Vanacore N, Salvetti M (2010) Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74(10):839–845

    CAS  PubMed  Google Scholar 

  • Rochester L, Galna B, Lord S, Mhiripiri D, Eglon G, Chinnery PF (2014) Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6. Mov Disord 29(2):252–255. https://doi.org/10.1002/mds.25706

    Article  PubMed  Google Scholar 

  • Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, Ferraldeschi M, Vulpiani MC, Ponzelli F, Salvetti M, Orzi F, Petrucci A, Vanacore N, Casali C, Ristori G (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14(10):985–991. https://doi.org/10.1016/S1474-4422(15)00201-X

    Article  CAS  PubMed  Google Scholar 

  • Ruffieux N, Colombo F, Gentaz E (2017) Successful neuropsychological rehabilitation in a patient with Cerebellar Cognitive Affective Syndrome. Appl Neuropsychol Child 6(2):180–188

    Google Scholar 

  • Schatton C, Synofzik M, Fleszar Z, Giese MA, Schols L, Ilg W (2017) Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: a rater-blinded, intra-individually controlled trial. Parkinsonism Relat Disord 39:80–84. https://doi.org/10.1016/j.parkreldis.2017.03.016

    Article  PubMed  Google Scholar 

  • Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720

    PubMed  Google Scholar 

  • Schmitz-Hübsch T, Coudert M, Giunti P, Globas C, Baliko L, Fancellu R, Mariotti C, Filla A, Rakowicz M, Charles P, Ribai P, Szymanski S, Infante J, van de Warrenburg BP, Durr A, Timmann D, Boesch S, Rola R, Depondt C, Schols L, Zdzienicka E, Kang JS, Ratzka S, Kremer B, Schulz JB, Klopstock T, Melegh B, du Montcel ST, Klockgether T (2010) Self-rated health status in spinocerebellar ataxia–results from a European multicenter study. Mov Disord 25(5):587–595

    PubMed  Google Scholar 

  • Schniepp R, Wuehr M, Ackl N, Danek A, Brandt T, Strupp M, Jahn K (2011) 4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA 1A mutation. J Neurol 258:1708

    PubMed  Google Scholar 

  • Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, Wuehr M (2016) The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol 263(7):1409–1417. https://doi.org/10.1007/s00415-016-8142-z

    Article  PubMed  Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER, Timmann D (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. NeuroImage 30(1):36–51

    CAS  PubMed  Google Scholar 

  • Schoch B, Regel JP, Frings M, Gerwig M, Maschke M, Neuhauser M, Timmann D (2007) Reliability and validity of ICARS in focal cerebellar lesions. Mov Disord 22:2162

    PubMed  Google Scholar 

  • Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3(5):291–304

    PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599

    CAS  PubMed  Google Scholar 

  • Schulz JB, Boesch S, Burk K, Durr A, Giunti P, Mariotti C, Pousset F, Schols L, Vankan P, Pandolfo M (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev 5(4):222–234

    Google Scholar 

  • Schulz JB, Borkert J, Wolf S, Schmitz-Hubsch T, Rakowicz M, Mariotti C, Schols L, Timmann D, van de Warrenburg B, Durr A, Pandolfo M, Kang JS, Mandly AG, Nagele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser TK (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. NeuroImage 49(1):158–168

    PubMed  Google Scholar 

  • Schweizer TA, Levine B, Rewilak D, O’Connor C, Turner G, Alexander MP, Cusimano M, Manly T, Robertson IH, Stuss DT (2008) Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabil Neural Repair 22(1):72–77

    PubMed  Google Scholar 

  • Scigliuolo GM, Sagnelli A, Brenna G, Pareyson D, Salsano E (2017) Lack of benefit of acetyl-dl-leucine in patients with multiple system atrophy of the cerebellar type. J Neurol Sci 379:12–13. https://doi.org/10.1016/j.jns.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  • Scoles DR, Pulst SM (2018) Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biol 15:707–714. https://doi.org/10.1080/15476286.2018.1454812

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93(5):2809–2821

    PubMed  Google Scholar 

  • Sokolov AA, Miall RC, Ivry RB (2017) The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci 21(5):313–332. https://doi.org/10.1016/j.tics.2017.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprenger A, Zils E, Rambold H, Sander T, Helmchen C (2005) Effect of 3,4-diaminopyridine on the postural control in patients with downbeat nystagmus. Ann N Y Acad Sci 1039:395–403

    CAS  PubMed  Google Scholar 

  • Stefanescu MR, Dohnalek M, Maderwald S, Thurling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D (2015) Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 138(Pt 5): 1182–1197. https://doi.org/10.1093/brain/awv064

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501

    PubMed  Google Scholar 

  • Storey E (2015) Presymptomatic features of spinocerebellar ataxias. Lancet Neurol 12(7):625–626. https://doi.org/10.1016/S1474-4422(13)70116-9

    Article  Google Scholar 

  • Strawser C, Schadt K, Hauser L, McCormick A, Wells M, Larkindale J, Lin H, Lynch DR (2017) Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother 17(9):895–907. https://doi.org/10.1080/14737175.2017.1356721

    Article  CAS  PubMed  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    CAS  PubMed  Google Scholar 

  • Strupp M, Brandt T (2009) Current treatment of vestibular, ocular motor disorders and nystagmus. Ther Adv Neurol Disord 2(4):223–239

    PubMed  PubMed Central  Google Scholar 

  • Strupp M, Schuler O, Krafczyk S, Jahn K, Schautzer F, Buttner U, Brandt T (2003) Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 61(2):165–170

    CAS  PubMed  Google Scholar 

  • Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77(3):269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strupp M, Teufel J, Habs M, Feuerecker R, Muth C, van de Warrenburg BP, Klopstock T, Feil K (2013) Effects of acetyl-DL-leucine in patients with cerebellar ataxia: a case series. J Neurol 260(10):2556–2561. https://doi.org/10.1007/s00415-013-7016-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Strupp M, Teufel J, Zwergal A, Schniepp R, Khodakhah K, Feil K (2017) Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract 7(1):65–76. https://doi.org/10.1212/CPJ.0000000000000321

    Article  PubMed  PubMed Central  Google Scholar 

  • Synofzik M, Ilg W (2014) Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int 2014:583507. https://doi.org/10.1155/2014/583507

    Article  PubMed  PubMed Central  Google Scholar 

  • Taub E, Uswatte G, Morris DM (2003) Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am 14(1 Suppl):S77–91.ix

    PubMed  Google Scholar 

  • Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9:580

    PubMed  PubMed Central  Google Scholar 

  • Thach WT, Bastian AJ (2004) Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res 143:353–366

    PubMed  Google Scholar 

  • Therrien AS, Wolpert DM, Bastian AJ (2016) Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain 139(Pt 1):101–114. https://doi.org/10.1093/brain/awv329

    Article  PubMed  Google Scholar 

  • Timmann D, Daum I (2010) How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol 23(1–2):81–100

    PubMed  PubMed Central  Google Scholar 

  • Timmann D, Horak FB (2001) Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res 141(1):110–120

    CAS  PubMed  Google Scholar 

  • Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F, Carrillo-Fumero R (2009) Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord 24(8):1111–1124

    PubMed  Google Scholar 

  • Tsunemi T, Ishikawa K, Tsukui K, Sumi T, Kitamura K, Mizusawa H (2010) The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 292(1–2):81–84

    CAS  PubMed  Google Scholar 

  • Tzvi E, Zimmermann C, Bey R, Munte TF, Nitschke M, Kramer UM (2017) Cerebellar degeneration affects cortico-cortical connectivity in motor learning networks. NeuroImage Clin 16:66–78. https://doi.org/10.1016/j.nicl.2017.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR (2005) Falls in degenerative cerebellar ataxias. Mov Disord 20(4):497–500

    PubMed  Google Scholar 

  • van Dun K, Overwalle FV, Manto M, Marien P (2018) Cognitive impact of cerebellar damage: is there a future for cognitive rehabilitation? CNS Neurol Disord Drug Targets 17(3):199–206

    PubMed  Google Scholar 

  • Vaz DV, Schettino Rde C, Rolla de Castro TR, Teixeira VR, Cavalcanti Furtado SR, de Mello Figueiredo E (2008) Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil 22(3):234–241

    PubMed  Google Scholar 

  • Vergaro E, Squeri V, Brichetto G, Casadio M, Morasso P, Solaro C, Sanguineti V (2011) Adaptive robot training for the treatment of incoordination in Multiple Sclerosis. J Neuroeng Rehabil 7:37

    Google Scholar 

  • Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43(2):279–291

    CAS  PubMed  Google Scholar 

  • Weimar C, Weber C, Wagner M, Busse O, Haberl RL, Lauterbach KW, Diener HC (2003) Management patterns and health care use after intracerebral hemorrhage. A cost-of-illness study from a societal perspective in Germany. Cerebrovasc Dis (Basel, Switzerland) 15(1–2): 29–36

    Google Scholar 

  • Werner S, Bock O, Timmann D (2009) The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res 193(2):189–196

    PubMed  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104(2):125–132

    CAS  PubMed  Google Scholar 

  • Ying SH, Landman BA, Chowdhury S, Sinofsky AH, Gambini A, Mori S, Zee DS, Prince JL (2009) Orthogonal diffusion-weighted MRI measures distinguish region-specific degeneration in cerebellar ataxia subtypes. J Neurol 256(11):1939–1942

    PubMed  PubMed Central  Google Scholar 

  • Zesiewicz TA, Wilmot G, Kuo SH, Perlman S, Greenstein PE, Ying SH, Ashizawa T, Subramony SH, Schmahmann JD, Figueroa KP, Mizusawa H, Schols L, Shaw JD, Dubinsky RM, Armstrong MJ, Gronseth GS, Sullivan KL (2018) Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of neurology. Neurology 90(10):464–471. https://doi.org/10.1212/WNL.0000000000005055

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Ilg .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ilg, W., Timmann, D. (2022). General Management of Cerebellar Disorders: An Overview. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_105

Download citation

Publish with us

Policies and ethics

Navigation