Hemodynamics During Development and Postnatal Life

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

Unlike other embryonic organs, the develo** heart must support, through its proper function, the develo** embryo from the time diffusion becomes limiting. Hemodynamics is thus not only a key to remodeling of the develo** vasculature but also a powerful stimulus for cardiac growth and differentiation. In this chapter are discussed prenatal models of hemodynamic perturbation that help clarifying the role of blood flow in embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barry A (1948) The functional significance of the cardiac jelly in the tubular heart of the chick embryo. Anat Rec 102:289–298

    Article  CAS  PubMed  Google Scholar 

  2. Forouhar AS, Liebling M, Hickerson A et al (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753

    Article  CAS  PubMed  Google Scholar 

  3. Hove JR, Koster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    Article  CAS  PubMed  Google Scholar 

  4. Bartman T, Walsh EC, Wen KK et al (2004) Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol 2:E129

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hogers B, DeRuiter MC, Gittenberger-de Groot AC et al (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481

    Article  CAS  PubMed  Google Scholar 

  6. Buffinton CM, Faas D, Sedmera D (2013) Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle. Biomech Model Mechanobiol 12:1037–1051

    Article  PubMed Central  PubMed  Google Scholar 

  7. Clark EB, Hu N, Frommelt P et al (1989) Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Physiol 257:H55–H61

    CAS  PubMed  Google Scholar 

  8. Clark EB, Hu N, Rosenquist GC (1984) Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. Am J Cardiol 53:324–327

    Article  CAS  PubMed  Google Scholar 

  9. Sedmera D, Pexieder T, Rychterova V et al (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254:238–252

    Article  CAS  PubMed  Google Scholar 

  10. Jouk PS, Usson Y, Michalowicz G et al (2000) Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat Embryol (Berl) 202:103–118

    Article  CAS  Google Scholar 

  11. Tobita K, Garrison JB, Li JJ et al (2005) Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol 283:193–201

    Article  PubMed  Google Scholar 

  12. Tomanek RJ, Hu N, Phan B et al (1999) Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc Res 41:663–671

    Article  CAS  PubMed  Google Scholar 

  13. Taber LA, Chabert S (2002) Theoretical and experimental study of growth and remodeling in the develo** heart. Biomech Model Mechanobiol 1:29–43

    Article  CAS  PubMed  Google Scholar 

  14. Sedmera D, Hu N, Weiss KM et al (2002) Cellular changes in experimental left heart hypoplasia. Anat Rec 267:137–145

    Article  PubMed  Google Scholar 

  15. Reckova M, Rosengarten C, deAlmeida A et al (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93:77–85

    Article  CAS  PubMed  Google Scholar 

  16. Hall CE, Hurtado R, Hewett KW et al (2004) Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131:581–592

    Article  CAS  PubMed  Google Scholar 

  17. Rychter Z, Rychterova V (1981) Angio- and myoarchitecture of the heart wall under normal and experimentally changed morphogenesis. In: Pexieder T (ed) Perspectives in cardiovascular research, vol 5. Raven Press, New York, pp 431–452

    Google Scholar 

  18. Rychter Z, Rychterova V, Lemez L (1979) Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz 4:86–90

    CAS  PubMed  Google Scholar 

  19. Sedmera D, Cook AC, Shirali G et al (2005) Current issues and perspectives in hypoplasia of the left heart. Cardiol Young 15:56–72

    Article  PubMed  Google Scholar 

  20. deAlmeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100:1363–1370

    Article  CAS  PubMed  Google Scholar 

  21. Krejci E, Pesevski Z, DeAlmeida AC et al (2012) Microarray analysis of normal and abnormal chick ventricular myocardial development. Physiol Res 61(Suppl 1):S137–S144

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Rychterova V (1971) Principle of growth in thickness of the heart ventricular wall in the chick embryo. Folia Morphol (Praha) 19:262–272

    CAS  Google Scholar 

  23. Tworetzky W, Wilkins-Haug L, Jennings RW et al (2004) Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 110:2125–2131

    Article  PubMed  Google Scholar 

  24. Tworetzky W, McElhinney DB, Marx GR et al (2009) In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics 124:e510–e518

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rudolph AM (2000) Myocardial growth before and after birth: clinical implications. Acta Paediatr 89:129–133

    Article  CAS  PubMed  Google Scholar 

  26. Turley K, Vlahakes GJ, Harrison MR et al (1982) Intrauterine cardiothoracic surgery: the fetal lamb model. Ann Thorac Surg 34:422–426

    Article  CAS  PubMed  Google Scholar 

  27. Bical O, Gallix P, Toussaint M et al (1990) Intrauterine versus postnatal repair of created pulmonary artery stenosis in the lamb. Morphologic comparison. J Thorac Cardiovasc Surg 99:685–690

    CAS  PubMed  Google Scholar 

  28. Toussaint M, Bical O, Galliz P et al (1998) Effect of intrauterine creation of pulmonary stenosis and atresia on ventricular hypertrophy in the foetal lamb; haemodynamic, morphometric and ultrastructural study. Eur Heart J 19(Abst Suppl):654

    Google Scholar 

  29. Sedmera D, Thompson RP (2011) Myocyte proliferation in the develo** heart. Dev Dyn 240:1322–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Leeuwenburgh BP, Helbing WA, Wenink AC et al (2008) Chronic right ventricular pressure overload results in a hyperplastic rather than a hypertrophic myocardial response. J Anat 212:286–294

    Article  PubMed Central  PubMed  Google Scholar 

  31. McAuliffe JJ, Robbins J (1991) Troponin T expression in normal and pressure-loaded fetal sheep heart. Pediatr Res 29:580–585

    Article  CAS  PubMed  Google Scholar 

  32. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85:339–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pesevski Z, Sedmera D (2013) Prenatal adaptations to overload. In: Ostadal B, Dhalla NS (eds) Cardiac adaptations. Springer Science/Business Media, New York, pp 41–57

    Chapter  Google Scholar 

  34. Flanagan MF, Fujii AM, Colan SD et al (1991) Myocardial angiogenesis and coronary perfusion in left ventricular pressure-overload hypertrophy in the young lamb. Evidence for inhibition with chronic protamine administration. Circ Res 68:1458–1470

    Article  CAS  PubMed  Google Scholar 

  35. Fishman NH, Hof RB, Rudolph AM et al (1978) Models of congenital heart disease in fetal lambs. Circulation 58:354–364

    Article  CAS  PubMed  Google Scholar 

  36. Saiki Y, Konig A, Waddell J et al (1997) Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. Surgery 122:412–419

    Article  CAS  PubMed  Google Scholar 

  37. Keller BB, MacLennan MJ, Tinney JP et al (1996) In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to -14.5 mouse embryos. Circ Res 79:247–255

    Article  CAS  PubMed  Google Scholar 

  38. MacLennan MJ, Keller BB (1999) Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med Biol 25:361–370

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa S, Tinney JP, Tobita K et al (2007) Hemodynamic vulnerability to acute hypoxia in day 10.5–16.5 murine embryos. J Obstet Gynaecol Res 33:114–127

    Article  PubMed  Google Scholar 

  40. Momoi N, Tinney JP, Liu LJ et al (2008) Modest maternal caffeine exposure affects develo** embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 294:H2248–H2256

    Article  CAS  PubMed  Google Scholar 

  41. Phoon CK, Ji RP, Aristizabal O et al (2004) Embryonic heart failure in NFATc1−/− mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 95:92–99

    Article  CAS  PubMed  Google Scholar 

  42. Sedmera D, Kockova R, Vostarek F et al (2015) Arrhythmias in the develo** heart. Acta Physiol (Oxf) 213:303–320

    Article  CAS  Google Scholar 

  43. Cotechini T, Komisarenko M, Sperou A et al (2014) Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med 211:165–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Limperopoulos C, Tworetzky W, McElhinney DB et al (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121:26–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. McElhinney DB, Marshall AC, Wilkins-Haug LE et al (2009) Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 120:1482–1490

    Article  PubMed Central  PubMed  Google Scholar 

  46. Donofrio MT, Moon-Grady AJ, Hornberger LK et al (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129:2183–2242

    Article  PubMed  Google Scholar 

  47. Marshall AC, van der Velde ME, Tworetzky W et al (2004) Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation 110:253–258

    Article  PubMed  Google Scholar 

  48. Sedmera D, Thompson RP, Kolar F (2003) Effect of increased pressure loading on heart growth in neonatal rats. J Mol Cell Cardiol 35:301–309

    Article  CAS  PubMed  Google Scholar 

  49. Benes Jr. J, Ammirabile G, Sankova B et al (2014) The role of connexin40 in develo** atrial conduction. FEBS Lett 588:1465–1469

    Google Scholar 

  50. Hu N, Sedmera D, Yost HJ et al (2000) Structure and function of the develo** zebrafish heart. Anat Rec 260:148–157

    Google Scholar 

  51. Kockova R, Svatunkova J, Novotny J et al (2013) Heart rate changes mediate the embryotoxic effect of antiarrhythmic drugs in the chick embryo. Am J Physiol Heart Circ Physiol 304:H895–H902

    Google Scholar 

Download references

Acknowledgments

This is supported by the Ministry of Education PRVOUK-P35/LF1/5 and institutional funding from the Academy of Sciences of the Czech Republic RVO: 67985823. Further support comes from Grant Agency of the Czech Republic 13-12412S and P302/11/1308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sedmera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Sedmera, D. (2016). Hemodynamics During Development and Postnatal Life. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_9

Download citation

Publish with us

Policies and ethics

Navigation