Single-Molecule Spintronics

  • Chapter
Molecular Magnets

Part of the book series: NanoScience and Technology ((NANO))

  • 2383 Accesses

Abstract

During the last few years different techniques have become available to study transport through an individual magnetic molecule. In a spin transistor, the magnetic molecule links two electrodes that are used to apply a bias voltage; a third gate electrode controls the position of molecular levels such that resonant tunneling and different redox states become accessible. Sequential single-electron transport and current suppression (Coulomb blockade) are generally observed. In this chapter, we show that spectroscopic information obtained from these three-terminal measurements confirms the high-spin state and magnetic anisotropy of the robust Fe4 single-molecule magnet incorporated in the junction. Moreover, we find that the electric gate field drastically modifies the magnetic properties of the oxidized or reduced molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that α, the angle of rotation, is in general different from θ, the angle between the easy axis and the magnetic field.

References

  1. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011)

    Article  Google Scholar 

  3. L. Bogani, W. Wernsdorfer, Nat. Mater. 7, 179 (2008)

    Article  ADS  Google Scholar 

  4. A. Caneschi, D. Gatteschi, R. Sessoli, A.L. Barra, L.C. Brunel, M. Guillot, J. Am. Chem. Soc. 113, 5873 (1991)

    Article  Google Scholar 

  5. M. Jamet, W. Wernsodrfer et al., Phys. Rev. Lett. 86, 4676 (2001)

    Article  ADS  Google Scholar 

  6. L. Hao et al., Appl. Phys. Lett. 98, 092504 (2011)

    Article  ADS  Google Scholar 

  7. M.J. MartĂ­nez-PĂ©rez et al., Appl. Phys. Lett. 99, 032504 (2011)

    Article  ADS  Google Scholar 

  8. J.-P. Cleuziou et al., Nat. Nanotechnol. 1, 53 (2006)

    Article  ADS  Google Scholar 

  9. M. Urdampilleta et al., Nat. Mater. 10, 502 (2011)

    Article  ADS  Google Scholar 

  10. A. Candini et al., Nano Lett. 11, 2634 (2011)

    Article  Google Scholar 

  11. R. Vincent et al., Nature 488, 357 (2012)

    Article  ADS  Google Scholar 

  12. A.S. Zyazin et al., Nano Lett. 10, 3307 (2010)

    Article  ADS  Google Scholar 

  13. J. Park et al., Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  14. D. Goldhaber-Gordon et al., Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  15. W.J. Liang et al., Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  16. L.H. Yu et al., Nano Lett. 4, 79 (2004)

    Article  ADS  Google Scholar 

  17. D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225 (1998)

    Article  ADS  Google Scholar 

  18. D. Weinmann, W. Häusler, B. Kramer, Phys. Rev. Lett. 74, 984 (1995)

    Article  ADS  Google Scholar 

  19. C. Romeike et al., Phys. Rev. B 75, 064404 (2007)

    Article  ADS  Google Scholar 

  20. H. Park et al., Appl. Phys. Lett. 75, 301 (1999)

    Article  ADS  Google Scholar 

  21. K. O’Neill, E.A. Osorio, H.S.J. van der Zant, Appl. Phys. Lett. 90, 133109 (2007)

    Article  ADS  Google Scholar 

  22. H.B. Heersche et al., Phys. Rev. Lett. 96, 206801 (2006)

    Article  ADS  Google Scholar 

  23. M.H. Jo et al., Nano Lett. 6, 2014 (2006)

    Article  ADS  Google Scholar 

  24. M. Mannini et al., Chem. Eur. J. 14, 7530 (2008)

    Article  Google Scholar 

  25. M. Mannini et al., Phys. Rev. Lett. 8, 194 (2009)

    Google Scholar 

  26. M. Mannini et al., Nature 468, 417 (2010)

    Article  ADS  Google Scholar 

  27. S. Accorsi et al., J. Am. Chem. Soc. 128, 4742 (2006)

    Article  Google Scholar 

  28. S. Carretta et al., Phys. Rev. B 70, 214403 (2004)

    Article  ADS  Google Scholar 

  29. A.S. Zyazin, H.S.J. van der Zant, M.R. Wegewijs, A. Cornia, Synth. Met. 161, 591 (2011)

    Article  Google Scholar 

  30. E. Burzuri, A. Zyazin, A. Cornia, H.S.J. van der Zant, Phys. Rev. Lett. 109, 147203 (2012)

    Article  ADS  Google Scholar 

  31. M. Mannini et al., Nat. Mater. 8, 194 (2009)

    Article  ADS  Google Scholar 

  32. J.M. Hernandez, X.X. Zhang, F. Luis, J. Bartolomé, J. Tejada, R. Ziolo, Europhys. Lett. 35, 301 (1996)

    Article  ADS  Google Scholar 

  33. J.R. Friedman et al., Phys. Rev. Lett. 76, 3830 (1996)

    Article  ADS  Google Scholar 

  34. L. Thomas et al., Nature 383, 145 (1996)

    Article  ADS  Google Scholar 

  35. E. Burzuri et al., Phys. Rev. Lett. 107, 097203 (2011)

    Article  ADS  Google Scholar 

  36. F. Elste, C. Timm, Phys. Rev. B 73, 235305 (2006)

    Article  ADS  Google Scholar 

  37. M. Misiorny, J. Barnás, Phys. Rev. B 75, 134425 (2007)

    Article  ADS  Google Scholar 

  38. A.N. Pasupathy, R.C. Bialczak et al., Science 306, 86 (2004)

    Article  ADS  Google Scholar 

  39. F. Prins, A. Barreiro et al., Nano Lett. 11, 4607 (2011)

    Article  ADS  Google Scholar 

  40. P. GĂĽtlich, H.A. Goodwin, Spin Crossover Transition Metal Compounds (Springer, Berlin, 2004)

    Google Scholar 

  41. R. Gonzalez-Prieto et al., Dalton Trans. 40, 7564 (2011)

    Article  Google Scholar 

  42. D. Aravena, E. Ruiz, J. Am. Chem. Soc. 134, 777 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FOM and the EU FP7 program under the Grant Agreement ELFOS. We thank A. Cornia, M. Wegewijs and K. Park for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique BurzurĂ­ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burzurí, E., van der Zant, H.S.J. (2014). Single-Molecule Spintronics. In: Bartolomé, J., Luis, F., Fernández, J. (eds) Molecular Magnets. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40609-6_12

Download citation

Publish with us

Policies and ethics

Navigation