Theoretical Approaches for Electron Transport Through Magnetic Molecules

  • Chapter
  • First Online:
Computational Modelling of Molecular Nanomagnets

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 34))

  • 453 Accesses

Abstract

Compared to conventional silicon-based electronic systems, molecular devices based on spin properties open up a much wider range of possibilities. The use of magnetic molecules as active components in these devices paves the way for the design of new spin-based devices, even controlling single spin centers. For instance, magnetic materials have been proposed as components to build spin valves in which the relative orientation of the magnetization between the electrodes controls the electron transport. Taking advantage of the broad toolkit of chemistry, molecules can be attached to electrodes via linking groups in order to confer robustness to molecule-based devices and increase conductivity. The interest in creating ever more complex molecular devices has been accompanied by significant advances in our theoretical understanding of the electron and spin-transfer phenomenon. The atomistic description of molecular devices is inherently complex due to their increased size in comparison with molecular systems, the combination of components with contrasting electronic structure, and the non-equilibrium nature of the transport problem. Furthermore, the description of spin-polarized systems poses new challenges to the theory, as accurate spin-dependent energetics are difficult to achieve, and the wavefunctions associated with magnetic states can be qualitatively more complex than the closed-shell solutions used for non-magnetic systems. In this chapter, we review molecular-based spintronic devices and the current approaches for modeling electron and spin transport in magnetic systems. Special attention is devoted to systems based on single-molecule magnets (SMMs) and on the emerging interest in the interplay between spin and chirality for the design of new spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joachim C, Ratner MA (2005) Molecular electronics: some views on transport junctions and beyond. Proc Nat Acad Sci USA 102:8801–8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Metzger RM (2015) Unimolecular electronics. Chem Rev 115:5056–5115

    Article  CAS  PubMed  Google Scholar 

  3. Ratner M (2013) A brief history of molecular electronics. Nat Nanotechnol 8:378–381

    Article  CAS  PubMed  Google Scholar 

  4. Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. In: World scientific series in nanotechnology and nanoscience. World Scientific Publishing Company, Singapore

    Google Scholar 

  5. Launay J-P, Verdaguer M (2018) Electrons in molecules from basic principles to molecular electronics. OUP, Oxford

    Google Scholar 

  6. **n N, Guan J, Zhou C, Chen X, Gu C, Li Y et al (2019) Concepts in the design and engineering of single-molecule electronic devices. Nat Rev Phys 1:211–230

    Article  Google Scholar 

  7. Chen H, Fraser Stoddart J (2021) From molecular to supramolecular electronics. Nat Rev Mater 6:804–828

    Article  CAS  Google Scholar 

  8. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  9. Chen A, Hutchby J, Zhirnov V, Bourianoff G (2015) Emerging nanoelectronic devices. Wiley, Chichester

    Google Scholar 

  10. Majumder MK, Kumbhare VR, Japa A, Kaushik BJ (2021) Introduction to microelectronics to nanoelectronics: design and technology. CRC Press

    Google Scholar 

  11. Kuekes PJ, Snider GS, Williams RS (2005) Crossbar nanocomputers. Sci Am 293:72–80

    Article  CAS  PubMed  Google Scholar 

  12. Frisenda R, Perrin ML, van der Zant HSJ (2015) Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy. Beilstein J Nanotechnol 6:2477–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gehring P, Thijssen JM, van der Zant HSJ (2019) Single-molecule quantum-transport phenomena in break junctions. Nat Rev Phys 1:381–396

    Article  Google Scholar 

  14. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    Article  CAS  PubMed  Google Scholar 

  15. Chen F, Hihath J, Huang Z, Li X, Tao NJ (2007) Measurement of single-molecule conductance. Annu Rev Phys Chem 58:535–564

    Article  CAS  PubMed  Google Scholar 

  16. Aradhya SV, Venkataraman L (2013) Single-molecule junctions beyond electronic transport. Nat Nano 8:399–410

    Article  CAS  Google Scholar 

  17. Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C (2016) Chemical principles of single-molecule electronics. Nat Rev Mater 1:16002

    Article  CAS  Google Scholar 

  18. Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76:3130–3132

    Article  CAS  Google Scholar 

  19. Jeong H, Li HB, Domulevicz L, Hihath J (2020) An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv Funct Mater 30:2000615

    Article  CAS  Google Scholar 

  20. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in a single-C60 transistor. Nature 407:57–60

    Article  CAS  PubMed  Google Scholar 

  21. Perrin ML, Burzurí E, Van Der Zant HSJ (2015) Single-molecule transistors. Chem Soc Rev 44:902–919

    Article  CAS  PubMed  Google Scholar 

  22. Burzurí E, Island JO, Díaz-Torres R, Fursina A, González-Campo A, Roubeau O et al (2016) Sequential electron transport and vibrational excitations in an organic molecule coupled to few-layer graphene electrodes. ACS Nano 10:2521–2527

    Article  PubMed  Google Scholar 

  23. Jia C, Migliore A, **n N, Huang S, Wang J, Yang Q et al (2016) Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352:1443–1445

    Article  CAS  PubMed  Google Scholar 

  24. Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52:681–750

    Article  CAS  PubMed  Google Scholar 

  25. Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys Condens Matter 19:103201

    Article  Google Scholar 

  26. Lindsay SM, Ratner MA (2007) Molecular transport junctions: clearing mists. Adv Mater 19:23–31

    Article  CAS  Google Scholar 

  27. Datta S (2013) Quantum transport: atom to transistor. Cambridge University Press, Cambridge, New York

    Google Scholar 

  28. Di Ventra M (2008) Electrical transport in nanoscale systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Díez-Perez I, Li Z, Hihath J, Li J, Zhang C, Yang X et al (2010) Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat Commun 1:31

    Google Scholar 

  30. Huang C, Rudnev AV, Hong W, Wandlowski T (2015) Break junction under electrochemical gating: testbed for single-molecule electronics. Chem Soc Rev 44:889–901

    Article  CAS  PubMed  Google Scholar 

  31. Gu M-W, Peng HH, Chen I-WP, Chen C-H (2021) Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. Nat Mater 20:658–664

    Article  CAS  PubMed  Google Scholar 

  32. Frederiksen T (2021) Bimetallic electrodes boost molecular junctions. Nat Mater 20:577–578

    Article  CAS  PubMed  Google Scholar 

  33. Scott GD, Natelson D (2010) Kondo resonances in molecular devices. ACS Nano 4:3560–3579

    Article  CAS  PubMed  Google Scholar 

  34. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR et al (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725

    Article  CAS  PubMed  Google Scholar 

  35. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Kondo resonance in a single-molecule transistor. Nature 417:725–729

    Article  CAS  PubMed  Google Scholar 

  36. Requist R, Modesti S, Baruselli PP, Smogunov A, Fabrizio M, Tosatti E (2014) Kondo conductance across the smallest spin 1/2 radical molecule. Proc Natl Acad Sci USA 111:69–74

    Article  CAS  PubMed  Google Scholar 

  37. Guo X, Zhu Q, Zhou L, Yu W, Lu W, Liang W (2021) Evolution and universality of two-stage Kondo effect in single manganese phthalocyanine molecule transistors. Nat Commun 12:1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanvito S (2011) Organic spintronics: filtering spins with molecules. Nat Mater 10:484–485

    Article  CAS  PubMed  Google Scholar 

  39. Zutic I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410

    Google Scholar 

  40. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355

    Article  CAS  PubMed  Google Scholar 

  41. Jairo S, Igor Ž (2012) New moves of the spintronics tango. Nat Mater 11:368–371

    Article  Google Scholar 

  42. Coronado E, Yamashita M (2016) Molecular spintronics: the role of coordination chemistry. Dalton Trans 45:16553–16555

    Article  CAS  PubMed  Google Scholar 

  43. Cornia A, Seneor P (2017) Spintronics: the molecular way. Nat Mater 16:505–506

    Article  CAS  PubMed  Google Scholar 

  44. Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Etienne P et al (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475

    Article  CAS  PubMed  Google Scholar 

  45. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830

    Article  CAS  Google Scholar 

  46. Chappert C, Fert A, Van Dau FN (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823

    Article  CAS  PubMed  Google Scholar 

  47. Sato N, Xue F, White RM, Bi C, Wang SX (2018) Two-terminal spin-orbit torque magnetoresistive random access memory. Nat Electron 1:508–511

    Article  CAS  Google Scholar 

  48. Lau Y-C, Betto D, Rode K, Coey JMD, Stamenov P (2016) Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol 11:758–762

    Article  CAS  PubMed  Google Scholar 

  49. Grimaldi E, Krizakova V, Sala G, Yasin F, Couet S, Kar GS et al (2020) Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat Nanotechnol 15:111–112

    Article  CAS  PubMed  Google Scholar 

  50. Miyamachi T, Gruber M, Davesne V, Bowen M, Boukari S, Joly L et al (2012) Robust spin crossover and memristance across a single molecule. Nat Commun 3:938

    Article  PubMed  Google Scholar 

  51. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30:661–675

    Article  CAS  Google Scholar 

  52. Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H (2016) Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat Mater 15:535–536

    Article  CAS  PubMed  Google Scholar 

  53. Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102:765–783

    Article  CAS  Google Scholar 

  54. Ralph DC, Stiles MD (2008) Spin transfer torques. J Magn Magn Mater 320:1190–1216

    Article  CAS  Google Scholar 

  55. Yu G, Upadhyaya P, Fan Y, Alzate JG, Jiang W, Wong KL et al (2014) Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol 9:548–554

    Article  CAS  PubMed  Google Scholar 

  56. Dediu VA, Hueso LE, Bergenti I, Taliani C (2009) Spin routes in organic semiconductors. Nat Mater 8:707–716

    Article  CAS  PubMed  Google Scholar 

  57. Dediu V, Hueso LE, Bergenti I, Riminucci A, Borgatti F, Graziosi P et al (2008) Room-temperature spintronic effects in Alq3-based hybrid devices. Phys Rev B 78:115203

    Article  Google Scholar 

  58. Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C et al (2010) Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys 6:615–620

    Article  CAS  Google Scholar 

  59. **ong ZH, Wu D, Valy Vardeny Z, Shi J (2004) Giant magnetoresistance in organic spin-valves. Nature 427:821–824

    Google Scholar 

  60. Cinchetti M, Dediu VA, Hueso LE (2017) Activating the molecular spinterface. Nat Mater 16:507–515

    Article  CAS  PubMed  Google Scholar 

  61. Sanvito S (2010) Molecular spintronics: the rise of spinterface science. Nat Phys 6:562–564

    Article  CAS  Google Scholar 

  62. Galbiati M, Tatay S, Barraud C, Dediu AV, Petroff F, Mattana R et al (2014) Spinterface: crafting spintronics at the molecular scale. MRS Bull 39:602–607

    Article  CAS  Google Scholar 

  63. Djeghloul F, Ibrahim F, Cantoni M, Bowen M, Joly L, Boukari S et al (2013) Direct observation of a highly spin-polarized organic spinterface at room temperature. Sci Rep 3:1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma’Mari F, Moorsom T, Teobaldi G, Deacon W, Prokscha T, Luetkens H et al (2015) Beating the Stoner criterion using molecular interfaces. Nature 524:69–73

    Article  PubMed  Google Scholar 

  65. Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA et al (2016) Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett 16:218–226

    Google Scholar 

  66. Aragonès AC, Aravena D, Valverde-Muñoz FJ, Real JA, Sanz F, Díez-Pérez I et al (2017) Metal-controlled magnetoresistance at room temperature in single-molecule devices. J Am Chem Soc 139:5768–5778

    Google Scholar 

  67. Gatteschi D, Benelli C (2015) Introduction to molecular magnetism: from transition metals to lanthanides. Wiley-VCH, Weinheim

    Google Scholar 

  68. Sessoli R, Gatteschi D, Caneshi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    Article  CAS  Google Scholar 

  69. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Book  Google Scholar 

  70. Coronado E (2020) Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat Rev Mater 5:87–104

    Article  Google Scholar 

  71. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442

    Article  CAS  PubMed  Google Scholar 

  72. Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2018) Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362:1400–1403

    Article  CAS  PubMed  Google Scholar 

  73. Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W (2014) Electrically driven nuclear spin resonance in single-molecule magnets. Science 344:1135–1138

    Article  CAS  PubMed  Google Scholar 

  74. Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11:2634–2639

    Article  CAS  PubMed  Google Scholar 

  75. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    Article  CAS  PubMed  Google Scholar 

  76. Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat Nanotechnol 8:165–169

    Article  CAS  PubMed  Google Scholar 

  77. Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488:357–360

    Article  CAS  PubMed  Google Scholar 

  78. Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W (2011) Supramolecular spin valves. Nat Mater 10:502–506

    Article  CAS  PubMed  Google Scholar 

  79. Komeda T, Isshiki H, Liu J, Katoh K, Yamashita M (2014) Variation of Kondo temperature induced by molecule-substrate decoupling in film formation of bis(phthalocyaninato)terbium(III) molecules on Au(111). ACS Nano 8:4866–4875

    Article  CAS  PubMed  Google Scholar 

  80. Katoh K, Komeda T, Yamashita M (2010) Surface morphologies, electronic structures, and Kondo effect of lanthanide(III)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices. Dalton Trans 39:4708–4723

    Article  CAS  PubMed  Google Scholar 

  81. Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem Asian J 7:1154–1169

    Article  CAS  PubMed  Google Scholar 

  82. Katoh K, Isshiki H, Komeda T, Yamashita M (2011) Multiple-decker phthalocyaninato Tb(III) single-molecule magnets and Y(III) complexes for next generation devices. Coord Chem Rev 255:2124–2148

    Article  CAS  Google Scholar 

  83. Shen Y, Ito H, Zhang H, Yamochi H, Cosquer G, Herrmann C et al (2021) Emergence of metallic conduction and cobalt(II)-based single-molecule magnetism in the same temperature range. J Am Chem Soc 143:4891–4895

    Article  CAS  PubMed  Google Scholar 

  84. Komeda T, Isshiki H, Liu J, Zhang Y-F, Lorente N, Katoh K et al (2011) Observation and electric current control of a local spin in a single-molecule magnet. Nat Commun 2:217

    Article  PubMed  Google Scholar 

  85. Misiorny M, Burzurí E, Gaudenzi R, Park K, Leijnse M, Wegewijs MR et al (2015) Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet. Phys Rev B 91:035442

    Article  Google Scholar 

  86. Burzurí E, Zyazin AS, Cornia A, Van Der Zant HSJ (2012) Direct observation of magnetic anisotropy in an individual Fe4 single-molecule magnet. Phys Rev Lett 109:147203

    Article  PubMed  Google Scholar 

  87. Burzurí E, Yamamoto Y, Warnock M, Zhong X, Park K, Cornia A et al (2014) Franck–Condon blockade in a single-molecule transistor. Nano Lett 14:3191–3196

    Article  PubMed  Google Scholar 

  88. Burzurí E, Gaudenzi R, Van Der Zant HSJ (2015) Observing magnetic anisotropy in electronic transport through individual single-molecule magnets. J Phys Condens Matter 27:113202

    Article  PubMed  Google Scholar 

  89. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C et al (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197

    Article  CAS  PubMed  Google Scholar 

  90. Heersche HB, de Groot Z, Folk JA, van der Zant HSJ, Romeike C, Wegewijs MR et al (2006) Electron transport through single Mn12 molecular magnets. Phys Rev Lett 96:206801

    Article  CAS  PubMed  Google Scholar 

  91. Henderson JJ, Ramsey CM, del Barco E, Mishra A, Christou G (2007) Fabrication of nanogapped single-electron transistors for transport studies of individual single-molecule magnets. J Appl Phys 101:09E102

    Article  Google Scholar 

  92. Haque F, Langhirt M, del Barco E, Taguchi T, Christou G (2011) Magnetic field dependent transport through a Mn4 single-molecule magnet. J Appl Phys 109:07B112

    Article  Google Scholar 

  93. Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS Nano 7:6225–6236

    Article  CAS  PubMed  Google Scholar 

  94. Krainov IV, Klier J, Dmitriev AP, Klyatskaya S, Ruben M, Wernsdorfer W et al (2017) Giant magnetoresistance in carbon nanotubes with single-molecule magnets TbPc2. ACS Nano 11:6868–6880

    Article  CAS  PubMed  Google Scholar 

  95. Lopes M, Candini A, Urdampilleta M, Reserbat-Plantey A, Bellini V, Klyatskaya S et al (2010) Surface-enhanced raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano 4:7531–7537

    Article  CAS  PubMed  Google Scholar 

  96. Urdampilleta M, Nguyen N-V, Cleuziou J-P, Klyatskaya S, Ruben M, Wernsdorfer W (2011) Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes. Int J Mol Sci 12:6656–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Halcrow MA (2013) Spin-crossover materials: properties and applications. Wiley, Chichester

    Book  Google Scholar 

  98. Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A (2018) Spin crossover nanomaterials: from fundamental concepts to devices. Adv Mater 30:1703862

    Article  Google Scholar 

  99. Bousseksou A, Molnár G, Salmon L, Nicolazzi W (2011) Molecular spin crossover phenomenon: recent achievements and prospects. Chem Soc Rev 40:3313–3335

    Article  CAS  PubMed  Google Scholar 

  100. Martinho PN, Rajnak C, Ruben M (2013) Nanoparticles, thin films and surface patterns from spin-crossover materials and electrical spin state control. In: Halcrow MA (ed) Spin-crossover materials: properties and applications. Wiley, pp 375–404

    Google Scholar 

  101. Ruiz E (2014) Charge transport properties of spin crossover systems. Phys Chem Chem Phys 16:14–22

    Article  CAS  PubMed  Google Scholar 

  102. Lefter C, Davesne V, Salmon L, Molnar G, Demont P, Rotaru A et al (2016) Charge transport and electrical properties of spin crossover materials: towards nanoelectronic and spintronic devices. Magnetochemistry 2:18

    Article  Google Scholar 

  103. Kumar KS, Ruben M (2017) Emerging trends in spin crossover (SCO) based functional materials and devices. Coord Chem Rev 346:176–205

    Article  Google Scholar 

  104. Meded V, Bagrets A, Fink K, Chandrasekar R, Ruben M, Evers F et al (2011) Electrical control over the Fe(II) spin crossover in a single molecule: theory and experiment. Phys Rev B 83:245415

    Article  Google Scholar 

  105. Frisenda R, Harzmann GD, Celis Gil JA, Thijssen JM, Mayor M, Van Der Zant HSJ (2016) Stretching-induced conductance increase in a spin-crossover molecule. Nano Lett 16:4733–4737

    Google Scholar 

  106. Burzurí E, García-Fuente A, García-Suárez V, Senthil Kumar K, Ruben M, Ferrer J et al (2018) Spin-state dependent conductance switching in single molecule-graphene junctions. Nanoscale 10:7905–7911

    Google Scholar 

  107. Gruber M, Davesne V, Bowen M, Boukari S, Beaurepaire E, Wulfhekel W et al (2014) Spin state of spin-crossover complexes: from single molecules to ultrathin films. Phys Rev B 89:195415

    Article  Google Scholar 

  108. Gruber M, Miyamachi T, Davesne V, Bowen M, Boukari S, Wulfhekel W et al (2017) Spin crossover in Fe(phen)(2)(NCS)(2) complexes on metallic surfaces. J Chem Phys 146:092312

    Article  Google Scholar 

  109. Gueddida S, Gruber M, Miyamachi T, Beaurepaire E, Wulfhekel W, Alouani M (2016) Exchange coupling of spin-crossover molecules to ferromagnetic Co islands. J Phys Chem Lett 7:900–904

    Article  CAS  PubMed  Google Scholar 

  110. Schleicher F, Studniarek M, Kumar KS, Urbain E, Katcko K, Chen J et al (2018) Linking electronic transport through a spin crossover thin film to the molecular spin state using X-ray absorption spectroscopy operando techniques. ACS Appl Mater Interfaces 10:31580–31585

    Article  CAS  PubMed  Google Scholar 

  111. Jasper-Toennies T, Gruber M, Karan S, Jacob H, Tuczek F, Berndt R (2017) Robust and selective switching of an FeIII spin-crossover compound on Cu2N/Cu(100) with memristance behavior. Nano Lett 17:6613–6619

    Google Scholar 

  112. Jasper-Tonnies T, Gruber M, Karan S, Jacob H, Tuczek F, Berndt R (2017) Deposition of a cationic FeIII spin-crossover complex on Au(111): impact of the counter ion. J Phys Chem Lett 8:1569–1573

    Google Scholar 

  113. Dugay J, Evers W, Torres-Cavanillas R, Giménez-Marqués M, Coronado E, Van Der Zant HSJ (2018) Charge mobility and dynamics in spin-crossover nanoparticles studied by time-resolved microwave conductivity. J Phys Chem Lett 9:5672–5678

    Google Scholar 

  114. Dugay J, Giménez-Marqués M, Kozlova T, Zandbergen HW, Coronado E, Van Der Zant HSJ (2015) Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. Adv Mater 27:1288–1293

    Google Scholar 

  115. Dugay J, Giménez-Marqués M, Venstra WJ, Torres-Cavanillas R, Sheombarsing UN, Manca N et al (2019) Sensing of the molecular spin in spin-crossover nanoparticles with micromechanical resonators. J Phys Chem C 123:6778–6786

    Google Scholar 

  116. Prins F, Monrabal-Capilla M, Osorio EA, Coronado E, van der Zant HSJ (2011) Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv Mater 23:1545–1549

    Article  CAS  PubMed  Google Scholar 

  117. Poggini L, Gonidec M, Gonzalez-Estefan JH, Pecastaings G, Gobaut B, Rosa P (2018) Vertical tunnel junction embedding a spin crossover molecular film. Adv Electron Mater 4:1800204

    Article  Google Scholar 

  118. Bernien M, Wiedemann D, Hermanns CF, Kruger A, Rolf D, Kroener W et al (2012) Spin crossover in a vacuum-deposited submonolayer of a molecular iron(II) complex. J Phys Chem Lett 3:3431–3434

    Article  CAS  PubMed  Google Scholar 

  119. Pronschinske A, Chen YF, Lewis GF, Shultz DA, Calzolari A, Nardelli MB et al (2013) Modification of molecular spin crossover in ultrathin films. Nano Lett 13:1429–1434

    Article  CAS  PubMed  Google Scholar 

  120. Lefter C, Rat S, Costa JS, Manrique-Juarez MD, Quintero CM, Salmon L et al (2016) Current switching coupled to molecular spin-states in large-area junctions. Adv Mater 28:7508–7514

    Article  CAS  PubMed  Google Scholar 

  121. Kumar KS, Studniarek M, Heinrich B, Arabski J, Schmerber G, Bowen M et al (2018) Engineering on-surface spin crossover: spin-state switching in a self-assembled film of vacuum-sublimable functional molecule. Adv Mater 30:1705416

    Article  Google Scholar 

  122. Shalabaeva V, Ridier K, Rat S, Manrique-Juarez MD, Salmon L, Seguy I et al (2018) Room temperature current modulation in large area electronic junctions of spin crossover thin films. Appl Phys Lett 112:013301

    Article  Google Scholar 

  123. Poggini L, Gonidec M, Balasubramanyam RKC, Squillantini L, Pecastaings G, Caneschi A et al (2019) Temperature-induced transport changes in molecular junctions based on a spin crossover complex. J Mater Chem C 7:5343–5347

    Article  CAS  Google Scholar 

  124. Vercik A, Vercik LCO, Bueno G (2019) Analysis of hysteresis and transport regimes using the normalized differential conductance in hybrid inorganic/organic nanocomposites. J Appl Phys 125:025101

    Article  Google Scholar 

  125. Harzmann GD, Frisenda R, Van Der Zant HSJ, Mayor M (2015) Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew Chem Int Ed 54:13425–13430

    Article  CAS  Google Scholar 

  126. Villalva J, Develioglu A, Montenegro-Pohlhammer N, Sánchez-de-Armas R, Gamonal A, Rial E et al (2021) Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat Commun 12:1578

    Google Scholar 

  127. Naaman R, Waldeck DH (2012) Chiral-induced spin selectivity effect. J Phys Chem Lett 3:2178–2187

    Article  CAS  PubMed  Google Scholar 

  128. Naaman R, Waldeck DH (2015) Spintronics and chirality: spin selectivity in electron transport through chiral molecules. In: Johnson MA, Martinez TJ (eds) Ann Rev Phys Chem 66:263–281

    Google Scholar 

  129. Michaeli K, Kantor-Uriel N, Naaman R, Waldeck DH (2016) The electron’s spin and molecular chirality—how are they related and how do they affect life processes? Chem Soc Rev 45:6478–6487

    Article  CAS  PubMed  Google Scholar 

  130. Mondal PC, Fontanesi C, Waldeck DH, Naaman R (2016) Spin-dependent transport through chiral molecules studied by spin-dependent electrochemistry. Acc Chem Res 49:2560–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Naaman R, Paltiel Y, Waldeck DH (2019) Chiral molecules and the electron spin. Nat Rev Chem 3:250–260

    Article  CAS  Google Scholar 

  132. Naaman R, Paltiel Y, Waldeck DH (2020) Chiral molecules and the spin selectivity effect. J Phys Chem Lett 11:3660–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ray K, Ananthavel SP, Waldeck DH, Naaman R (1999) Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283:814–816

    Article  CAS  PubMed  Google Scholar 

  134. Mondal PC, Fontanesi C, Waldeck DH, Naaman R (2015) Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry. ACS Nano 9:3377–3384

    Article  CAS  PubMed  Google Scholar 

  135. Aragonès AC, Medina E, Ferrer-Huerta M, Gimeno N, Teixidó M, Palma JL et al (2017) Measuring the spin-polarization power of a single chiral molecule. Small 13:1602519

    Article  Google Scholar 

  136. Kulkarni C, Mondal AK, Das TK, Grinbom G, Tassinari F, Mabesoone MFJ et al (2020) Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv Mater 32:1904965

    Article  CAS  Google Scholar 

  137. Lu H, Wang J, **ao C, Pan X, Chen X, Brunecky R et al (2019) Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci Adv 5:aay0571

    Google Scholar 

  138. Ray SG, Daube SS, Naaman R (2005) On the capturing of low-energy electrons by DNA. Proc Nat Acad Sci USA 102:15–19

    Article  CAS  PubMed  Google Scholar 

  139. Naaman R, Paltiel Y, Waldeck DH (2020) Chiral induced spin selectivity gives a new twist on spin-control in chemistry. Acc Chem Res 53:2659–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M, Shiraogawa T et al (2019) Light-driven molecular switch for reconfigurable spin filters. Nat Commun 10:2455

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mishra D, Markus TZ, Naaman R, Kettner M, Gohler B, Zacharias H et al (2013) Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc Nat Acad Sci USA 110:14872–14876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Evers F, Korytár R, Tewari S, van Ruitenbeek JM (2020) Advances and challenges in single-molecule electron transport. Rev Mod Phys 92:035001

    Article  CAS  Google Scholar 

  143. Kim WY, Choi YC, Min SK, Cho Y, Kim KS (2009) Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices. Chem Soc Rev 38:2319–2333

    Google Scholar 

  144. Oberhofer H, Reuter K, Blumberger J (2017) Charge transport in molecular materials: an assessment of computational methods. Chem Rev 117:10319–10357

    Article  CAS  PubMed  Google Scholar 

  145. Quek SY, Khoo KH (2014) Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges. Acc Chem Res 47:3250–3257

    Google Scholar 

  146. Landauer R (1988) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 32:306–316

    Article  Google Scholar 

  147. Ferrer J, Lambert CJ, Garcia-Suarez VM, Manrique DZ, Visontai D, Oroszlany L et al (2014) GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New J Phys 16:093029

    Article  Google Scholar 

  148. García-Suárez VM, Ferrer J (2012) Nonequilibrium transport response from equilibrium transport theory. Phys Rev B 86:125446

    Article  Google Scholar 

  149. Verzijl CJO, Seldenthuis JS, Thijssen JM (2013) Applicability of the wide-band limit in DFT-based molecular transport calculations. J Chem Phys 138:094102

    Article  CAS  PubMed  Google Scholar 

  150. Solomon GC, Herrmann C, Ratner MA (2012) Molecular electronic junction transport: some pathways and some ideas. Top Curr Chem 1–38

    Google Scholar 

  151. Herrmann C, Groß L, Steenbock T, Solomon GC (2015) Artaios—a computer code for postprocessing electronic structure calculations, Version 1.9

    Google Scholar 

  152. Sand AM, Malme JT, Hoy EP (2021) A multiconfiguration pair-density functional theory-based approach to molecular junctions. J Chem Phys 155:114115

    Article  CAS  PubMed  Google Scholar 

  153. Sharma P, Bao JJ, Truhlar DG, Gagliardi L (2021) Multiconfiguration pair-density functional theory. Annu Rev Phys Chem 72:541–564

    Article  CAS  PubMed  Google Scholar 

  154. Hoy EP, Mazziotti DA, Seideman T (2017) Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions. J Chem Phys 147:184110

    Article  PubMed  Google Scholar 

  155. Bones DX, Malme JT, Hoy EP (2021) Examining conductance values in the biphenyl molecular switch with reduced density matrices. Int J Quantum Chem 121:e266233

    Article  Google Scholar 

  156. Gross EKU, Kohn W (1985) Local density-functional theory of frequency-dependent linear response. Phys Rev Lett 55:2850–2852

    Article  CAS  PubMed  Google Scholar 

  157. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  158. van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80:1280–1283

    Article  Google Scholar 

  159. van Leeuwen R (2001) Key concepts in time-dependent density-functional theory. Int J Mod Phys B 15:1969–2023

    Article  Google Scholar 

  160. Fiolhais C, Nogueira F, Marques MAL (2003) A primer in density functional theory. Springer, Berlin, New York

    Book  Google Scholar 

  161. Kurth S, Stefanucci G (2017) Transport through correlated systems with density functional theory. J Phys Condens Matter 29:413002

    Article  CAS  PubMed  Google Scholar 

  162. Kwok Y, Zhang Y, Chen GH (2014) Time-dependent density functional theory for quantum transport. Front Phys 9:698–710

    Google Scholar 

  163. Niehaus TA, Chen G (2012) Quantum transport simulations based on time dependent density functional theory. In: Zeng J, Zhang RQ, Treutlein H (eds) Quantum simulations of materials and biological systems. Springer, Dordrecht

    Google Scholar 

  164. Chen S, Kwok Y, Chen G (2018) Time-dependent density functional theory for open systems and its applications. Acc Chem Res 51:385–393

    Article  CAS  PubMed  Google Scholar 

  165. Li X, Govind N, Isborn C, DePrince AE, Lopata K (2020) Real-time time-dependent electronic structure theory. Chem Rev 120:9951–9993

    Article  CAS  PubMed  Google Scholar 

  166. Yabana K, Bertsch GF (1996) Time-dependent local-density approximation in real time. Phys Rev B 54:4484–4487

    Article  CAS  Google Scholar 

  167. Bertsch GF, Iwata JI, Rubio A, Yabana K (2000) Real-space, real-time method for the dielectric function. Phys Rev B 62:7998–8002

    Article  CAS  Google Scholar 

  168. Takimoto Y, Vila FD, Rehr JJ (2007) Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. J Chem Phys 127:154114

    Article  CAS  PubMed  Google Scholar 

  169. Dederichs PH, Blügel S, Zeller R, Akai H (1984) Ground states of constrained systems: application to cerium impurities. Phys Rev Lett 53:2512–2515

    Article  CAS  Google Scholar 

  170. Wu Q, Van Voorhis T (2005) Direct optimization method to study constrained systems within density-functional theory. Phys Rev A 72:024502

    Article  Google Scholar 

  171. Kaduk B, Kowalczyk T, Van Voorhis T (2012) Constrained density functional theory. Chem Rev 112:321–370

    Article  CAS  PubMed  Google Scholar 

  172. Cheng C-L, Evans JS, Van Voorhis T (2006) Simulating molecular conductance using real-time density functional theory. Phys Rev B 74:155112

    Article  Google Scholar 

  173. Carey R, Chen L, Gu B, Franco I (2017) When can time-dependent currents be reproduced by the Landauer steady-state approximation? J Chem Phys 146:174101

    Article  PubMed  Google Scholar 

  174. Vela S, Verot M, Fromager E, Robert V (2017) Electron transport through a spin crossover junction. Perspectives from a wavefunction-based approach. J Chem Phys 146:064112

    Google Scholar 

  175. Rivas E, Huelga SF (2012) Open quantum systems. Springer, Dordrecht

    Book  Google Scholar 

  176. Scully MO, Zubairy MS (1996) Quantum optics. Akademie Verlag

    Google Scholar 

  177. Kliesch M, Barthel T, Gogolin C, Kastoryano M, Eisert J (2011) Dissipative quantum church-turing theorem. Phys Rev Lett 107:120501

    Article  CAS  PubMed  Google Scholar 

  178. Schwager H, Cirac JI, Giedke G (2013) Dissipative spin chains: Implementation with cold atoms and steady-state properties. Phys Rev A 87:022110

    Article  Google Scholar 

  179. Zurek WH (2003) Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys 75:715–775

    Article  Google Scholar 

  180. Dorn G, Arrigoni E, von der Linden W (2021) Efficient energy resolved quantum master equation for transport calculations in large strongly correlated systems. J Phys A 54:075301

    Article  CAS  Google Scholar 

  181. Gorini V, Kossakowski A, Sudarshan ECG (1976) Completely positive dynamical semigroups of N-level systems. J Math Phys 17:821–825

    Article  Google Scholar 

  182. Lindblad G (1976) On the generators of quantum dynamical semigroups. Commun Math Phys 48:119–130

    Article  Google Scholar 

  183. Giménez-Santamarina S, Cardona-Serra S, Baldoví JJ (2019) Exploring the transport properties of equatorially low-coordinated erbium single ion magnets. J Magn Magn Mater 489:165455

    Article  Google Scholar 

  184. Bagrets A (2013) Spin-polarized electron transport across metal-organic molecules: a density functional theory approach. J Chem Theory Comput 9:2801–2815

    Article  CAS  PubMed  Google Scholar 

  185. Zhu L, Yao KL, Liu ZL (2010) Molecular spin valve and spin filter composed of single-molecule magnets. Appl Phys Lett 96:082115

    Article  Google Scholar 

  186. Hao H, Zheng X, Wang R, Zeng Z, Lin HQ (2012) Spin-flip effect on transport properties of a Mn3 molecule. J Appl Phys 111:07B303

    Google Scholar 

  187. Zu F, Liu Z, Yao K, Gao G, Fu H, Zhu S et al (2014) Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4 based single-molecule junction. Sci Rep 4:4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zu F-X, Gao G-Y, Fu H-H, **ong L, Zhu S-C, Peng L et al (2015) Efficient spin filter and spin valve in a single-molecule magnet Fe4 between two graphene electrodes. Appl Phys Lett 107:252403

    Article  Google Scholar 

  189. Gallego-Planas N, Martín-Rodríguez A, Ruiz E (2016) Magnetic and transport properties of Fe4 single-molecule magnets: a theoretical insight. Dalton Trans 45:18867–18875

    Google Scholar 

  190. Cremades E, Pemmaraju CD, Sanvito S, Ruiz E (2013) Spin-polarized transport through single-molecule magnet Mn6 complexes. Nanoscale 5:4751–4757

    Google Scholar 

  191. Pemmaraju CD, Rungger I, Sanvito S (2009) Ab initio calculation of the bias-dependent transport properties of Mn12 molecules. Phys Rev B 80:104422

    Article  Google Scholar 

  192. Barraza-Lopez S, Park K, García-Suárez V, Ferrer J (2009) First-principles study of electron transport through the single-molecule magnet Mn12. Phys Rev Lett 102:246801

    Article  PubMed  Google Scholar 

  193. Barraza-Lopez S, Park K, García-Suárez V, Ferrer J (2009) Spin-filtering effect in the transport through a single-molecule magnet Mn12 bridged between metallic electrodes. J Appl Phys 105:07E309

    Article  Google Scholar 

  194. Park K, Barraza-Lopez S, García-Suárez VM, Ferrer J (2010) Effects of bonding type and interface geometry on coherent transport through the single-molecule magnet Mn12. Phys Rev B 81:125447

    Article  Google Scholar 

  195. Bode N, Arrachea L, Lozano GS, Nunner TS, von Oppen F (2012) Current-induced switching in transport through anisotropic magnetic molecules. Phys Rev B 85:115440

    Article  Google Scholar 

  196. Soncini A, Chibotaru LF (2010) Molecular spintronics using noncollinear magnetic molecules. Phys Rev B 81:132403

    Article  Google Scholar 

  197. McCaskey A, Yamamoto Y, Warnock M, Burzurí E, Van Der Zant HSJ, Park K (2015) Electron-vibron coupling effects on electron transport via a single-molecule magnet. Phys Rev B 91:125419

    Google Scholar 

  198. Seldenthuis JS, van der Zant HSJ, Ratner MA, Thijssen JM (2008) Vibrational excitations in weakly coupled single-molecule junctions: a computational analysis. ACS Nano 2:1445–1451

    Article  CAS  PubMed  Google Scholar 

  199. Barone V, Bloino J, Biczysko M, Santoro F (2009) Fully integrated approach to compute vibrationally resolved optical spectra: from small molecules to macrosystems. J Chem Theory Comput 5:540–554

    Article  CAS  PubMed  Google Scholar 

  200. Aravena D, Ruiz E (2011) Coherent transport through spin-crossover single molecules. J Am Chem Soc 134:777–779

    Article  PubMed  Google Scholar 

  201. Baadji N, Sanvito S (2012) Giant resistance change across the phase transition in spin-crossover molecules. Phys Rev Lett 108:217201

    Article  CAS  PubMed  Google Scholar 

  202. Martín-Rodríguez A, Aravena D, Ruiz E (2016) DFT approaches to transport calculations in magnetic single-molecule devices. Theor Chem Acc 135:192

    Google Scholar 

  203. Aragonès AC, Martín-Rodríguez A, Aravena D, di Palma G, Qian W, Puigmartí-Luis J et al (2021) Room-temperature spin-dependent transport in metalloporphyrin-based supramolecular wires. Angew Chem Int Ed 60:25958–29565

    Google Scholar 

  204. Huang J, **e R, Hu Y, Lei S, Li Q (2020) Theoretical investigation of spin-crossover temperature and transport properties of two Fe(II) mononuclear complexes. Chem Phys Lett 758:137925

    Google Scholar 

  205. Du M-L, Hu Y-J, Huang J, Li Q-X (2018) Electronic transport properties of spin-crossover magnet Fe(II)N4S2 complexes. Chin J Chem Phys 31:33

    Article  CAS  Google Scholar 

  206. Montenegro-Pohlhammer N, Urzúa-Leiva R, Páez-Hernández D, Cárdenas-Jirón G (2019) Spin-filter transport and magnetic properties in a binuclear Cu(II) expanded porphyrin based molecular junction. Dalton Trans 48:8418–8426

    Google Scholar 

  207. Ghosh D, Parida P, Pati SK (2015) Spin-crossover molecule based thermoelectric junction. Appl Phys Lett 106:193105

    Google Scholar 

  208. Hao G, Mosey A, Jiang X, Yost AJ, Sapkota KR, Wang GT et al (2019) Nonvolatile voltage controlled molecular spin state switching. Appl Phys Lett 114:032901

    Article  Google Scholar 

  209. Gopakumar TG, Matino F, Naggert H, Bannwarth A, Tuczek F, Berndt R (2012) Electron-induced spin crossover of single molecules in a bilayer on gold. Angew Chem Int Ed 51:6262–6266

    Article  CAS  Google Scholar 

  210. Baadji N, Piacenza M, Tugsuz T, Della Sala F, Maruccio G, Sanvito S (2009) Electrostatic spin crossover effect in polar magnetic molecules. Nat Mater 8:813–817

    Article  CAS  PubMed  Google Scholar 

  211. Hao H, Zheng X, Song L, Wang R, Zeng Z (2012) Electrostatic spin crossover in a molecular junction of a single-molecule magnet Fe2. Phys Rev Lett 108:017202

    Article  PubMed  Google Scholar 

  212. Montenegro-Pohlhammer N, Sánchez-de-Armas R, Calzado CJ (2021) Deposition of the spin crossover FeII–pyrazolylborate complex on Au(111) surface at the molecular level. Chem Eur J 27:712–723

    Google Scholar 

  213. Palomino CM, Sánchez-De-Armas R, Calzado CJ (2021) Theoretical inspection of the spin-crossover [Fe(tzpy)2(NCS)2] complex on Au(100) surface. J Chem Phys 154:034701

    Google Scholar 

  214. Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824

    Google Scholar 

  215. Zhu L, Zou F, Gao JH, Fu YS, Gao GY, Fu HH et al (2015) The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes. Nanotechnology 26:315201

    Article  CAS  PubMed  Google Scholar 

  216. Fransson J (2020) Vibrational origin of exchange splitting and chiral-induced spin selectivity. Phys Rev B 102:235416

    Article  CAS  Google Scholar 

  217. Huisman KH, Thijssen JM (2021) CISS effect: a magnetoresistance through inelastic scattering. J Phys Chem C 125:23364–23369

    Article  CAS  Google Scholar 

  218. Ghosh S, Mishra S, Avigad E, Bloom BP, Baczewski LT, Yochelis S et al (2020) Effect of chiral molecules on the electron’s spin wavefunction at interfaces. J Phys Chem Lett 11:1550–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang C-Z, Mujica V, Lai Y-C (2021) Spin Fano resonances in chiral molecules: an alternative mechanism for the CISS effect and experimental implications. Nano Lett 21:10423–10430

    Article  CAS  PubMed  Google Scholar 

  220. Wu Y, Subotnik JE (2021) Electronic spin separation induced by nuclear motion near conical intersections. Nat Commun 12:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fransson J (2021) Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules. Nano Lett 21:3026–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yeganeh S, Ratner MA, Medina E, Mujica V (2009) Chiral electron transport: scattering through helical potentials. J Chem Phys 131:014707

    Article  PubMed  Google Scholar 

  223. Gutierrez R, Díaz E, Naaman R, Cuniberti G (2012) Spin-selective transport through helical molecular systems. Phys Rev B 85:081404

    Article  Google Scholar 

  224. Medina E, González-Arraga LA, Finkelstein-Shapiro D, Berche B, Mujica V (2015) Continuum model for chiral induced spin selectivity in helical molecules. J Chem Phys 142:194308

    Google Scholar 

  225. Pan TR, Guo AM, Sun QF (2016) Spin-polarized electron transport through helicene molecular junctions. Phys Rev B 235448

    Google Scholar 

  226. Alwan S, Dubi Y (2021) Spinterface origin for the chirality-induced spin-selectivity effect. J Am Chem Soc 143:14235–14241

    Article  CAS  PubMed  Google Scholar 

  227. Fay TP, Limmer DT (2021) Origin of chirality induced spin selectivity in photoinduced electron transfer. Nano Lett 21:6696–6702

    Article  CAS  PubMed  Google Scholar 

  228. Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985–1013

    Article  CAS  Google Scholar 

  229. Guo H, Yarkony DR (2016) Accurate nonadiabatic dynamics. Phys Chem Chem Phys 18:26335–26352

    Article  CAS  PubMed  Google Scholar 

  230. **e C, Malbon CL, Yarkony DR, **e D, Guo H (2018) Signatures of a conical intersection in adiabatic dissociation on the ground electronic state. J Am Chem Soc 140:1986–1989

    Article  CAS  PubMed  Google Scholar 

  231. Chiesa A, Chizzini M, Garlatti E, Salvadori E, Tacchino F, Santini P et al (2021) Assessing the nature of chiral-induced spin selectivity by magnetic resonance. J Phys Chem Lett 12:6341–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz, E., Aravena, D. (2023). Theoretical Approaches for Electron Transport Through Magnetic Molecules. In: Rajaraman, G. (eds) Computational Modelling of Molecular Nanomagnets. Challenges and Advances in Computational Chemistry and Physics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-031-31038-6_9

Download citation

Publish with us

Policies and ethics

Navigation