Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Textile industry is the most avid user for dyes. Rapidly growing interest in develo** more synthetic commercial dyes from its native to endeavour human needs contributed to aesthetic problems to the environment and public health. Increasing concerns about colours in the effluents lead to worldwide efforts to develop more effective colour removal processes. However, the physical and chemical treatment methods of the discharge effluents are not economically feasible even if some of them are inefficient nowadays. Furthermore, liberating the hazardous product from secondary pollution from these methods acquires valid waste management system. Without proper discharge, azo dyes and associated chemicals may induce mutagenesis leading to toxicity in aquatic plants and animals. Utilization of mycoremediation of dyes as green chemistry technology has yet become a promising approach due to its clear picture of cost, eco-friendly and environmentally benign process as an alternative green solution to replace or supplement for current and future environmental issues. The bioremediation using fungi was reported to be more tolerant than bacteria and more efficient for decolorization as well as degradation of toxic chemicals. However, white-rot fungi are well known for their outstanding ability in bioremediation process. Their ability to produce highly non-specific extracellular enzymes allows them to degrade a wide array of pollutants resembling dyes and its derivatives. White-rot fungi secrete one or more of the three principle ligninolytic enzymes: lignin peroxidase (LiP, E.C. 1.11.1.14), Mn-dependent peroxidase (MnP, E.C. 1.11.1.13) and phenol oxidase (laccase) (Lac, E.C. 1.10.3.2) and other peroxidases. The present review discusses comprehensively the science and technology of biodegradation and fungal bioremediation of synthetic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah N, Othaman R, Abdullah I, Jon N, Baharum A (2012) Studies on the adsorption of phenol red dye using silica-filled ENR/PVC beads. JETEAS 3:845–850

    CAS  Google Scholar 

  • Ademakinwa NA, Agboola FK (2014) Production of laccase by Auerobasidium Pullulans and Cladosporium Werneckii under optimized conditions: applications in decolourization of textile dyes. RRJMB 3(2):32–40

    Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68

    CAS  Google Scholar 

  • Ahmad A, Harris W, Ooi B (2012) Removal of dye from wastewater of textile industry using membrane technology. Jurnal Teknologi 36:31–44

    Google Scholar 

  • Ali NF, El-Mohamedy RSR (2012) Microbial decolourization of textile waste water. J Saudi Chem Soc 16:117–123

    Article  CAS  Google Scholar 

  • Ali SS, Sun J (2015) Physico-chemical pretreatment and fungal bio-treatment for park wastes and cattle dung for biogas production. Springer Plus 4:712–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andleeb S, Atiq N, Ali MI, Razi-ul-Hussnain R, Shafique M, Ahmad B, Ghumro PB, Hussain M, Hameed A, Ahmad S (2010) Biological treatment of textile effluent in stirred tank bioreactor. Int J Agric Biol 12:256–260

    CAS  Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeter Biodergr 61:189–193

    Article  CAS  Google Scholar 

  • Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym 101:56–66

    Article  CAS  Google Scholar 

  • Ayed L, Bakhrouf A, Achour S (2011) Application of the mixture design to decolorize effluent textile wastewater using continuous stirred bed reactor. Water SA 2(37):21–26

    Google Scholar 

  • Baborová P, Möder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253

    Article  PubMed  CAS  Google Scholar 

  • Babu BR, Parande A, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11(3):141–153

    CAS  Google Scholar 

  • Bafana A, Chakrabarti T (2008) Lateral gene transfer in phylogeny of azoreductase enzyme. Comput Biol Chem 32:191–197

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2012) Biopul**. In: Biotechnology for pulp and paper processing. Springer US, Boston, pp 67–92

    Chapter  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Bari E, Nazarnezhad N, Kazemi SM, Tajick GMA, Mohebby B, Schmidt O, Clausen CA (2015) Clausen comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech. Int Biodeter Biodergr 104:231–237

    Article  CAS  Google Scholar 

  • Bibi I, Bhatti HN, Asgher M (2013) Bioremediation of wastewater containing reactive dyes by Agaricus bisporus a21: effect of supplements and redox mediators. Pak J Agric Sci 50(3):445–453

    Google Scholar 

  • Bilal M, Asgher M (2015) Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem Cent J 9:47–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilal M, Asgher M, Ramzan M (2015) Purification and biochemical characterization of extracellular manganese peroxidase from Ganoderma lucidum IBL-05 and its application. Sci Res Essays 10:456–464

    Article  Google Scholar 

  • Blánquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7

    Article  CAS  Google Scholar 

  • Boehike H (2005) Encyclopedia of clothing and fashion volume1. Academic Dress to Eyeglasses/Thomos Gale Corporation, Columbus, pp 123–130

    Google Scholar 

  • Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Chang MCY (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  PubMed  Google Scholar 

  • Busse N, Wagner D, Kraume M, Czermak P (2013) Reaction kinetics of versatile peroxidase for the degradation of lignin compounds. Am J Biochem Biotechnol 9(4):365–394

    Article  CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  CAS  PubMed  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In: Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTech, Rijeka, pp 55–81

    Google Scholar 

  • Castillo-Carvajal L, Ortega-Gonzále K, Barragán-Huerta BE, Pedroza-Rodríguez AM (2012) Evaluation of three immobilization supports and two nutritional conditions for reactive black 5 removal with Trametes versicolor in air bubble reactor. Afr J Biotechnol 11:3310–3320

    CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Kenneth N (ed) Timmis handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour Technol 147:662–666

    Article  CAS  PubMed  Google Scholar 

  • Chander M, Arora D (2007) Evaluation of some white rot fungi for their potential to decolourise industrial dyes. Dyes Pigments 72:192–198

    Article  CAS  Google Scholar 

  • Chanwun T, Muhamad N, Chirapongsatonkul N, Churngchow N (2013) Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization. AMB Express 3:14–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Yang G, Sweeney S, Feng Y (2010) Household biogas use in rural China: a study of opportunities and constraints. Renew Sustain Energy Rev 14:545–549

    Article  Google Scholar 

  • Chen M, Zeng G, Tan Z, Jiang M, Li H, Liu L, Zhu Y, Yu Z, Wei Z, Liu Y, **e G (2011) Understanding lignindegrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS One 6:1–8

    Google Scholar 

  • Chengalroyen MD, Dabbs ER (2013) The microbial degradation of azo dyes-minireview. World J Microbiol Biotechnol 29:389–399

    Article  CAS  PubMed  Google Scholar 

  • Chiong T, Lau S, Khor E, Danquah M (2014) Enzymatic approach to phenol removal from wastewater using peroxidases. OA. Biotechnology 10:3–9

    Google Scholar 

  • Couto R, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  PubMed  Google Scholar 

  • Couturier M, Navarro D, Chevret D, Henrissat B, Piumi P, RuizDuenas FJ, Martinez AT, Grigoriev IV, Riley R, Lipzen A, Berrin JG, Master ER, Rosso MN (2015) Enhanced degradation of softwood versus hardwood by the white rot fungus Pycnoporus coccineus. Biotechnol Biofuels 8:216–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daâssi D, Mechichi T, Nasri M, Rodriguez-Couto S (2013) Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. J Environ Manag 129:324–332

    Article  CAS  Google Scholar 

  • Daassi D, Rodriguez-Couto S, Nasri M, Mechichi T (2014) Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeter Biodegr 90:71–78

    Google Scholar 

  • Dashtban M, Schraft H, Tarannum A, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawkar VV, Jadhav UU, Tamboli DP, Govindwar SP (2010) Efficient industrial dye decolorization by Bacillus sp. VUS with its enzyme system. Ecotoxicol Environ Saf 73:1696–1703

    Article  CAS  PubMed  Google Scholar 

  • Devi VM, Inbathamizh L, Ponnu TM, Premalatha S, Divya M (2012) Dye decolorization using fungal laccase. Bull Environ Pharmacol Life Sci 1:67–71

    Google Scholar 

  • DOE (2010) DOE (Department of environment), environmental quality (Industrial effluents) regulations. Official website of department of environment, Ministry of Natural Resources and Environment, Malaysia. https://www.doe.gov.my/portalv1/wpcontent/uploads/2015/01/Environmental_Quality_Sewage_And_Industrial_Effluents_Regulations_1979_-_P.U.A_12-79.pdf

  • Duran N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and probable dietary intake with the mushroom meal. Environ Sci Pollut Res 23:14549–14559

    Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Article  CAS  PubMed  Google Scholar 

  • El-Enshasy HA (2007) Filamentous fungal cultures – process characteristics, products, and applications. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. Elsevier, Amsterdam, pp 225–261

    Chapter  Google Scholar 

  • Eswaramoorthi S, Dhanapal K, Chauhan D (2008) Advanced in textile waste water treatment: the case for UV-ozonation and membrane bioreactor for common effluent treatment plants in Tirupur, Tamil Nadu India, Environment with People’s Involvement & Co-ordination in India, Coimbatore

    Google Scholar 

  • Gahlout M, Gupte S, Gupte A (2013) Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. Australas Biotechnol 3:143–152

    Google Scholar 

  • Gerardi MH (2006) Wastewater bacteria. Wiley, Hoboken

    Book  Google Scholar 

  • Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–18

    Google Scholar 

  • Godfrey BJ, Mayfield MB, Brown JA, Gold MH (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119–124

    Article  CAS  PubMed  Google Scholar 

  • Godliving Y, Mtui S (2012) Lignocellulolytic enzymes from tropical fungi: types, substrates and applications. Sci Res Essays 7:1544–1555

    Google Scholar 

  • Gomez-Toribio V, Martinez AT, Martinez MJ, Guillen F (2001) Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H O generation and the influence of Mn. Eur J Biochem 268:4787–4793

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Eyles JL, Collins CD, Hodson ME (2011) Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils. Environ Pollut 159:918–923

    Article  CAS  PubMed  Google Scholar 

  • Goncalves I, Silva C, Cavaco-Paulo A (2015) Ultrasound enhanced laccase applications. Green Chem 17:1362–1374

    Article  CAS  Google Scholar 

  • Grassi E, Scodeller P, Filiel N, Carballo R, Levin L (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeter Biodegr 65:635–643

    Article  CAS  Google Scholar 

  • Gupta V, Khamparia S, Tyagi I, Jaspal D, Malviya A (2015) Decolorization of mixture of dyes: a critical review. GJESM 1:71–94

    CAS  Google Scholar 

  • Gupte A, Tripathi A, Rudakiya D, Patel H, Gupte S (2016) Bioremediation of Polycyclic Aromatic Hydrocarbon (PAHs): a perspective. The Open Biotech J 10(Suppl-2, M9):363–378

    Article  Google Scholar 

  • Hadibarata T, Ayu Kristanti R (2011) Effect of environmental factors in the decolorization of remazol brilliant blue r by Polyporus sp. S133. J Chil Chem Soc 57(2):1095–1098

    Article  Google Scholar 

  • Hadibarata T, Yusoff A, Aris A, Salmiati HT, Kristanti R (2012) Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water Air Soil Pollut 223:1045–1054

    Article  CAS  Google Scholar 

  • Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Zubir MMFA, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye reactive black 5 using white rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224:1–9

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K (2009) Suitability of membrane bioreactor for treatment of recalcitrant textile dye wastewater utilising white rot fungi. Int J Environ Eng 2:43–55

    Article  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2006) Membrane coupled fungi reactor an innovative approach to bioremediation of hazardous dye wastewater. Environ Sci 13(6):317–325

    CAS  PubMed  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377

    Article  CAS  Google Scholar 

  • Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Heinfling A, Martínez MJ, Martínez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hestbjerg HP, Willumsen A, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698

    Article  CAS  PubMed  Google Scholar 

  • Hildén K, Martinez AT, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419

    Article  PubMed  CAS  Google Scholar 

  • Hossain K, Ismail N, Rafatullah M, Quaik S, Nasir M, Maruthi A, Shaik R (2015) Bioremediation of textile effluent with membrane bioreactor using the white rot fungus Coriolus versicolor. JPAM 9:1979–1987

    CAS  Google Scholar 

  • Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14:73–92

    Article  CAS  Google Scholar 

  • Iqbal HMN, Asgher M, Bhatti HN (2011) Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. Bioresources 6(2):1273–1287

    CAS  Google Scholar 

  • Jagtap VS, Sonawane VR, Pahuja DN, Rajan MG, Rajashekharrao B, Samue AM (2003) An effective and better strategy for reducing body burden of radio strontium. J Radiol Prot 23(3):317–326

    Article  CAS  PubMed  Google Scholar 

  • Junghanns C, Neumann JF, Schlosser D (2012) Application of the aquatic fungus Phoma sp. (DSM 22425) in bioreactors for the treatment of textile dye model effluents. J Chem Technol Biotechnol 87:1276–1283

    Article  CAS  Google Scholar 

  • Kang KY, Sung JS, Kim DY (2007) Evaluation of white rot fungi for biopul** of wood. Mycobiology 35(4):205–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan MR, Sahu O (2014) Treatment of dye waste water by bioreactor. IJEBB 2:25–29

    Google Scholar 

  • Kaur B, Kumar B, Garg N, Kaur N (2015) Statistical optimization of conditions for decolorization of synthetic dyes by Cordyceps militaris MTCC 3936 using RSM. Biomed Res Int:536745. https://doi.org/10.1155/2015/536745

  • Khalik WF, Ho LN, Ong SA, Wong YS, Yusoff NA, Ridwan F (2015) Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malays 44:607–612

    Article  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33(8):1697–1714

    Article  CAS  PubMed  Google Scholar 

  • Khataee AR, Zarei M, Pourhassan M (2009) Application of microalga Chlamydomonas sp. for biosorptive removal of a textile dye from contaminated water: modelling by a neural network. Environ Technol 30:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee Y, Yang J, Lee B, Park C, Kim S (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white rot fungi. Desalination 168:287–293

    Article  CAS  Google Scholar 

  • Kiran S, Ali S, Asgher M, Anwar F (2012) Comparative study on decolorization of reactive dye 222 by white rot fungi Pleurotus ostreatus IBL-02 and Phanerochaete chrysosporium IBL-03. Afr J Microbiol Res 6:3639–3650

    CAS  Google Scholar 

  • Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu T, Nörtemann B (2010) Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. In: Biosystems Engineering II (ed) Christoph Wittmann and Krull Rainer. Springer, Berlin Heidelberg, pp 1–21

    Google Scholar 

  • Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123

    Article  CAS  PubMed  Google Scholar 

  • Kumar VV, Kirupha SD, Periyaraman P, Sivanesan S (2011) Screening and induction in laccase activity in fungal species and its applications in dye decolorization, Afr J Microbial Res 5:1261–1267

    Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase-a versatile enzyme for biotechnological applications. Communicating current research and educational topics and trends in. Appl Microbiol 1:233–245

    Google Scholar 

  • Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin–recent routes reviewed. Eur Polym J 49:1151–1173

    Article  CAS  Google Scholar 

  • Lavanya C, Dhankar R, Chhikara S, Sheoran S (2014) Degradation of toxic dyes: a review. IJCMAS 3:189–199

    CAS  Google Scholar 

  • Leelakriangsak M, Borisut S (2012) Characterization of the decolorizing activity of azo dyes by Bacillus subtilis azoreductase AzoR1. Songklanakarin J Sci Technol 34:509–516

    CAS  Google Scholar 

  • Li H, Zhang R, Tang L, Zhang J, Mao Z (2015) Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese J Chem Eng 23:227–233

    Article  CAS  Google Scholar 

  • Ling ZR, Wang SS, Zhu MJ, Ning YJ, Wang SN, Li B, Yang AZ, Zhang GQ, Zhao XM (2015) An extracellular laccase with potent dye decolorizing ability from white rot fungus Trametes sp. LAC-01. Int J Biol Macromol 81:785–793

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  CAS  PubMed  Google Scholar 

  • Lu S (2016) Market size of the global textile and apparel industry: 2014 to 2018. https://shenglufashion.wordpress.com/2015/08/09/market-size-of-the-global-textile-and-apparel-industry-2014-to-2018/

  • Malayil S, Chanakya HN (2016) Fungal enzyme cocktail treatment of biomass for higher biogas production from leaf litter. Procedia Environ Sci 35:826–832

    Article  CAS  Google Scholar 

  • Mangamuri UK, Muvva V, Poda S, Kamma S (2012) Characteristics and dyes biodegradation potential of crude ligninolytic enzymes from white rot fungus Crepidotus variabilis isolated in coastal Tanzania. Malays. J Microbiol 8:83–91

    CAS  Google Scholar 

  • Mannan S, Fakhrul-Razi A, Alam Md Z (2007) Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. J Environ Sci 19:23–28

    Article  CAS  Google Scholar 

  • Marandi R, Doulati Ardejani F, Amir Afshar H (2010) Biosorption of lead (II) and zinc (II) ions by pre-treated biomass of Phanerochaete chrysosporium. IJMEI 1:9–16

    Google Scholar 

  • Martinez MJ, Ruiz-Dueñas FJ, Guillén F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Speranza M, Ruiz-Duenas F, Ferreira P, Camarero S, Guillen F, Martinez M, Gutierrez A, del Rio J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    CAS  PubMed  Google Scholar 

  • Martins M, Ferreira I, Santos I, Queiroz M, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J Biotech 89:91–98

    Article  CAS  Google Scholar 

  • Mate DM, Alcalde M (2016) Laccase: a multipurpose biocatalyst at the forefront of biotechnology-mini-review. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12422

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • Mbolekwa Z (2007) Removal of reactive dyes from dye liquor using activated carbon for the reuse of water, salt and energy-degree of masters of science in engineering university of Kwazulu-natal, Durban, South Africa. http://www.wrc.org.za/Knowledge%20Hub%20Documents/Research%20Reports/1542-1-08.pdf

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. BioSci 52:883–890

    Article  Google Scholar 

  • McKinney RE (2004) Environmental pollution control microbiology. Marcel Dekker, Inc, New York

    Book  Google Scholar 

  • Mendoza L, Jonstrup M, Hatti-Kaul R, Mattiasson B (2011) Azo dye decolorization by a laccase/mediator system in a membrane reactor: enzyme and mediator reusability. Enzym Microb Technol 49:478–484

    Article  CAS  Google Scholar 

  • Miao Y (2005) Biological remediation of dyes in textile effluent: a review on current treatment technologies. Bioresour Technol 58:217–227

    Google Scholar 

  • Mielgo I, Moreira MT, Feijoo G, Lema JM (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res 36:1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Tanaka H, Nakamura M, Wariishi H (2006) Isolation and characterization of a novel lignin peroxidase from the white-rot basidiornycete Trametes cervina. J Fac Agr Kyushu Univ 51:99–104

    CAS  Google Scholar 

  • Miranda RCM, Gomes EB, Pereira N Jr, Marin-Morales MA, Machado KMG, Gusmão NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367

    Article  CAS  Google Scholar 

  • Mirzadeh SS, Khezri SM, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA (2014) Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng 12:6–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2:31–40

    Google Scholar 

  • Muthangya M, Mshandete AM, Kivaisi AK (2009) Two-steps biological pretreatment of sisal leaf decortication residues for enhanced anaerobic digestion for biogas production. Int J Mol Sci 10:66–73

    Article  CAS  Google Scholar 

  • Narkhede M, Mahajan R, Narkhede K (2013) Ligninolytic enzyme production and Remazol brilliant blue R (RBBR) decolorization by a newly isolated white rot fungus: Basidiomycota spp. L-168. Int J Pharm Bio Sci 4:220–228

    CAS  Google Scholar 

  • Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, Noor ZZ (2015) Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environ Sci Pollut R 22:11669–11678

    Article  CAS  Google Scholar 

  • Nguyen TA, Juang RS (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J 219:109–117

    Article  CAS  Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson I, Möller A, Mattiasson B, Rubindamayugi MST, Welander U (2006) Decolorization of synthetic and real textile wastewater by the use of white rot fungi. Enzym Microb Technol 38:94–100

    Article  CAS  Google Scholar 

  • Novotný ÄŒ, Cajthaml T, Svobodova K, Å uÅ¡la M, Å aÅ¡ek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential-review. Folia Microbiol 54:375–390

    Article  CAS  Google Scholar 

  • Othman N, Djamal R, Mili N, Zailani S (2011a) Removal of red 3BS dye from wastewater using emulsion liquid membrane process. J Appl Sci 11:1406–1410

    Article  CAS  Google Scholar 

  • Othman N, Mili N, Wong YM (2011b) Liquid-liquid extraction of black B dye from liquid waste solution using tridodecylamine. J Environ Sci Technol 4:324–331

    Article  CAS  Google Scholar 

  • Ottoni C, Lima L, Santos C, Lima N (2011) Bioreactor for the decolourisation of textile dye using ligninolytic fungi under high alkaline and salt conditions. In: Bioreactor for the decolourisation of textile dye using ligninolytic fungi under high alkaline and salt conditions, FEMS 2011-4th congress of European microbiologists

    Google Scholar 

  • Pacheco JS, Santana M, Aguilar Uscanga MG, Cavazos Garduño A, Serrano Niño J, Gómez H, Aguilar Uscanga B (2015) Ability of Phanerochaete chrysosporium and Trametes versicolor to remove Zn, Cr, Pb metal ions. Terra Latinoam 33:189–198

    Google Scholar 

  • Pakshirajan K, Radhika P (2013) Enzymatic decolourization of textile dyeing wastewater by the white rot fungus Phanerochaete chrysosporium. TLIST 2:42–48

    Google Scholar 

  • Pang YL, Abdullah AZ (2013) Current status of textile industry wastewater management and research progress in Malaysia: a review. Clean-Soil Air Water 41:751–764

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  PubMed  Google Scholar 

  • Parmar B, Mervana P, Vyas B (2015) Degradation of textile dyes by white rot basidiomycetes. Life sci leafl 59:62–75

    Google Scholar 

  • Parshetti GK, Kalme SD, Govindwar SP (2007) Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresour Technol 98:3638–3642

    Article  CAS  PubMed  Google Scholar 

  • PaszczyÅ„ski A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–41

    Article  Google Scholar 

  • Patel Y, Gupte A (2014) Biological removal of synthetic textile dye reactive red M5B by isolated white rot fungal culture AGYP-1 under optimized culture conditions. Int J Agric Environ Biotechnol 7:499–510

    Article  Google Scholar 

  • Pease EA, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from cDNA sequence. J Biol Chem 264:13531–13535

    CAS  PubMed  Google Scholar 

  • Pereira L, Alves M (2012) Dyes-environmental impact and remediation. In: environmental protection strategies for sustainable development. Springer, New York, pp 111–162

    Book  Google Scholar 

  • Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995

    Article  CAS  PubMed  Google Scholar 

  • Qayyum S, Khan I, Farhana Maqbool F, Zhao Y, Gu Q, Peng C (2016) Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan J Zool 48:1241–1247

    Google Scholar 

  • Qin X, Zhang J, Zhang X, Yang Y (2014) Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One 9(11):1–13

    Google Scholar 

  • Quintanilla D, Hagemann T, Hansen K, Gernaey KV (2015) Fungal morphology in industrial enzyme production-modelling and monitoring. Adv Biochem Eng Biotech 149:29–54

    CAS  Google Scholar 

  • Radha KV, Regupathi I, Arunagiri A, Murugesan T (2005) Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40(10):3337–3345

    Article  CAS  Google Scholar 

  • Ramlee NA, Rodhi M, Anak Brandah A, Anuar A, Alias N, Tengku Mohd T (2014) Potential of integrated membrane bioreactor in batik dye degradation-a review. Appl Mech Mat 575:50–54

    CAS  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashidi HR, Sulaiman NMN, Hashim NA (2012) Batik industry synthetic wastewater treatment using nanofiltration membrane. Procedia Eng 44:2010–2012

    Article  Google Scholar 

  • Rashidi HR, Sulaiman NMN, Hashim NA, Hassan CRC, Ramli MR (2015) Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalination Water Treat 55:86–95

    Article  CAS  Google Scholar 

  • Ravichandran KR, Taguchi AT, Wei Y, Tommos C, Nocera DG, Stubbe J (2016) A >200 meV uphill thermodynamic landscape for radical transport in Escherichia coli ribonucleotide reductase determined using fluorotyrosine- substituted enzymes. J Am Chem Soc 138(41):13706–13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodarte-Morales A, Feijoo G, Moreira M, Lema J (2012) Evaluation of two operational regimes: fed-batch and continuous for the removal of pharmaceuticals in a fungal stirred tank reactor. Chem Eng Trans 27:151–156

    Google Scholar 

  • Rohilla SK, Salar RK, Kumar J (2012) Optimization of physiochemical parameters for decolorization of reactive black HFGR using soil fungus, Aspergillus allhabadii MTCC 9988. J Bioremed Biodegr 3(6):1–5

    Google Scholar 

  • Romero S, Blánquez P, Caminal G, Font X, Sarrà M, Gabarrell X, Vicent T (2006) Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochem Eng J 31:42–47

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez A (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  PubMed  CAS  Google Scholar 

  • Saba M, Falandysz J, Nnorom IC (2016) Accumulation and distribution of mercury in fruiting bodies by fungus Suillusluteus foraged in Poland, Belarus and Sweden. Environ Sci Pollut Res 23:2749–2757

    Article  CAS  Google Scholar 

  • Sanghi R, Dixit A, Guha S (2006) Sequential batch culture studies for the decolorisation of reactive dye by Coriolus versicolor. Bioresour Technol 97:396–400

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Khanal SK, Jasti N, ** B, Pometto AL, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40:400–449

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar S (2011) Bacterial dcolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Sari FP, Budiyono (2014) Enhanced biogas production from rice straw with various pretreatment: a review. Waste Tech 2(1):17–25

    Google Scholar 

  • Sathishkumar P, Balan K, Palvannan T, Kamala-Kannan S, BT O, Rodríguez-Couto S (2013) Efficiency of Pleurotus florida laccase on decolorization and detoxification of the reactive dye Remazol brilliant blue R (RBBR) under optimized conditions. Clean Soil Air Water 41:665–672

    Article  CAS  Google Scholar 

  • Saxena S, Raja ASM, Arputharaj A (2017) Challenges in sustainable wet processing of textiles. In: Muthu SS (ed) Textiles and clothing sustainability: sustainable textile chemical processes. Springer, Singapore, pp 43–79

    Chapter  Google Scholar 

  • Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30:112–133

    Article  Google Scholar 

  • Shah M (2014) Effective treatment systems for azo dye degradation: a joint venture between physico-chemical & microbiological process. IJEBB 2(5):231–242

    Google Scholar 

  • Shahvali M, Assadi MM, Rostami K (2000) Effect of environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium. Bioprocess Eng 23(6):721–726

    Article  CAS  Google Scholar 

  • Shojnacka K (2010) Biosorption and bioaccumulation-the prospects for practial applications. Environ Int 36:229–307

    Google Scholar 

  • Shree Nath S (2014) Microbial degradation of synthetic dyes in wastewaters. Springer International Publishing, Cham

    Google Scholar 

  • Siddiquia M, Wahida Z, Sakinaha M (2011) Bioremediation and biofouling perspective of real batik effluent by indigenous bacteria. IJCEE 2(5):302–308

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, New Jersey, p 592

    Book  Google Scholar 

  • Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Environ Sci Technol 41:807–878

    Article  CAS  Google Scholar 

  • Singh A, Gauba P (2014) Mycoremediation: a treatment for heavy metal pollution of soil. JCEET 1(4):59–61

    Google Scholar 

  • Singh P, Sulaiman O, Hashim R, Rupani P, Peng LC (2010) Biopul** of lignocellulosic material using different fungal species: a review. Rev Environ Sci Biotechnol 9:141–151

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes–a review. Int Biodeter Biodegr 104:21–31

    Article  CAS  Google Scholar 

  • Sousa AC, Martins LO, Robalo MP (2013) Laccase-catalysed homo-coupling of primary aromatic amines towards the biosynthesis of dyes. Adv Synth Catal 355:2908–2917

    Article  CAS  Google Scholar 

  • Spina F, Romagnolo A, Prigione V, Tigini V, Varese G (2014) A scaling-up issue: the optimal bioreactor configuration for effective fungal treatment of textile wastewaters. Chem Eng Trans 38:37–42

    Google Scholar 

  • Srikanlayanukul M, Khanongnuch C, Lumyong S (2006) Decolorization of textile wastewater by immobilized Coriolus versicolor RC3 in repeated-batch system with the effect of sugar addition. CMUJ 5:301–306

    Google Scholar 

  • Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91:1915–1929

    Article  CAS  PubMed  Google Scholar 

  • Suteu D, Zaharia C, Malutan T (2011) Removal of orange 16 reactive dye from aqueous solutions by waste sunflower seed shells. J Serb Chem Soc 76:607–624

    Article  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enz Microb Technol 24(3):130–137

    Article  CAS  Google Scholar 

  • Szalinska E, Dominik J, Vignati DAL, Bobrowski A, Bas B (2010) Seasonal transport pattern of chromium (III and VI) in a stream receiving wastewater from tanneries. Appl Geochem 25:116–122

    Article  CAS  Google Scholar 

  • Ten Have R, Hartmans S, Teunissen PJM, Field JA (1998) Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett 422:391–394

    Article  PubMed  Google Scholar 

  • Thakur M (2014) Mycoremediation- a potential tool to control soil pollution. AJES 9(1):24–31

    Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Sci (Washington) 221:661–662

    Article  CAS  Google Scholar 

  • Tien M, Tu C (1986) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520–523

    Article  Google Scholar 

  • Tirado-Torres D, Gayaosso-Canales M, Marmolejo-Santillán Y, Romo-Gómez C, Acevedo-Sandoval O (2016) Removal of polycyclic aromatic hydrocarbons by Pleurotus ostreatus sp. ATCC38540 in liquid medium. AJSR 4(10):376–379

    Google Scholar 

  • Toca-Herrera JL, Osma JF, Rodríguez Couto S (2007) Potential of solid-state fermentation for laccase production. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 391–400

    Google Scholar 

  • Upadhye V, Joshi SS (2012) Advances in wastewater treatment–a review. Int J Chem Sci Appl 3:264–268

    CAS  Google Scholar 

  • Vaithanomsat P, Apiwatanapiwat W, Petchoy O, Chedchant J (2010) Decolorization of reactive dye by white-rot fungus Datronia sp. KAPI0039. Kasetsart J Nat Sci 44:879–890

    CAS  Google Scholar 

  • Vasmara C, Cianchetta S, Marchetti R, Galletti S (2015) Biogas production from wheat straw pre-treated with ligninolytic fungi and co-digestion with pig slurry. EEMJ 14(7):1751–1760

    Google Scholar 

  • Vijayaraghavan J, Basha SS, Jegan J (2013) A review on efficacious methods to decolorize reactive azo dye. JUEE 7:30–47

    Article  Google Scholar 

  • Vinodha S, Thomas J, Varghese R, Jegathambal P (2013) Decolorization of red CLB dye using membrane bioreactor. Int J Environ Sci 3:1537

    Google Scholar 

  • Vishwakarma SK, Singh MP, Srivastava AK, Pandey VK (2012) Azo dye (direct blue 14) decolorization by immobilized extracellular enzymes of Pleurotus species. Cell Mol Biol 58:21–25

    CAS  PubMed  Google Scholar 

  • Wang MX, Zhang QL, Yao SJ (2015) A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem Eng J 259:837–844

    Article  CAS  Google Scholar 

  • Waring DR, Hallas G (2013) The chemistry and application of dyes. Plenum Press/Springer US, New York/London, pp 17–47

    Google Scholar 

  • Water and chemical use in the textile dyeing and finishing industry (1997) Guide produced by the environmental technology best practice programme (GG 62), (1997). UK. http://www.wrap.org.uk/sites/files/wrap/GG062.pdf

  • Won SW, Vijayaraghavan K, Mao J, Kim S, Yun Y-S (2009) Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes. Bioresour Technol 100:6301–6306

    Google Scholar 

  • Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 44(10):1185–1189

    Article  CAS  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin Q, Ng TB, Ye X, Lin J (2014) Purification and characterization of a novel laccase from Cerrena sp. HYB07 with dye decolorizing ability. PLoS One 9(10):1–13

    Google Scholar 

  • Yao J, Jia R, Zheng L, Wang B (2013) Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol Bioproc E 18:868–877

    Article  CAS  Google Scholar 

  • Yaropolov A, Skorobogat’Ko O, Vartanov S, Varfolomeyev S (1994) Laccase. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  • Yavuz M, Kaya G, Aytekin Ç (2014) Using Ceriporiopsis subvermispora CZ-3 laccase for indigo carmine decolourization and denim bleaching. Int Biodeter Biodegr 88:199–205

    Article  CAS  Google Scholar 

  • Zhang YZ, Reddy CA (1988) Use of synthetic oligonucleotide probes for identifying ligninase cDNA clones. Methods Enzymol 161:228–237

    Article  CAS  PubMed  Google Scholar 

  • Zuraida SM, Nurhaslina C, Halim KK (2013) Influence of agitation, pH and temperature on growth and decolorization of batik wastewater by bacteria Lactobacillus delbruckii. IJRRAS 14(2):269–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham A. El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Enshasy, H.A., Hanapi, S.Z., Abdelgalil, S.A., Malek, R.A., Pareek, A. (2017). Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68957-9_5

Download citation

Publish with us

Policies and ethics

Navigation