Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Abstract

γ-Aminobutyric acid (GABA) neurotransmission is terminated by the GABA transporters (GATs) via uptake of GABA into neurons and surrounding glial cells. Four different transporters have been identified: GAT1, GAT2, GAT3, and the betaine/GABA transporter 1 (BGT1). The GAT1 subtype is the most explored transporter due to its high abundance in the brain and the existence of selective and potent GAT1 inhibitors. Consequently, less is known about the role and therapeutic potential of the non-GAT1 subtypes. Emerging pharmacological evidence suggests that some of these transporters pose interesting targets in several brain disorders. Pharmacological non-GAT1-selective tool compounds are important to further investigate the involvement of GATs in different pathological conditions. Extensive medicinal chemistry efforts have been put into the development of subtype-selective inhibitors, but truly selective and potent inhibitors of non-GAT1 subtypes are still limited. This review covers the advances within the medicinal chemistry area and the structural basis for obtaining non-GAT1-selective inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khawaja A, Petersen JG, Damgaard M, Jensen MH, Vogensen SB, Lie ME, et al. Pharmacological identification of a guanidine-containing β-alanine analogue with low micromolar potency and selectivity for the betaine/GABA transporter 1 (BGT1). Neurochem Res. 2014;39(10):1988–96.

    Article  CAS  PubMed  Google Scholar 

  • Alexander SP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, et al. The concise guide to pharmacology 2015/16: transporters. Br J Pharmacol. 2015;172(24):6110–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali FE, Bondinell WE, Dandridge PA, Frazee JS, Garvey E, Girard GR, et al. Orally active and potent inhibitors of gamma-aminobutyric acid uptake. J Med Chem. 1985;28(5):653–60.

    Article  CAS  PubMed  Google Scholar 

  • Baglo Y, Gabrielsen M, Sylte I, Gederaas OA. Homology modeling of human gamma-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One. 2013;8(6):e65200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol. 2006;70(5):1630–42.

    Article  CAS  PubMed  Google Scholar 

  • Bock E, Hamberger A. Immunoelectrophoretic determination of brain-specific antigens in bulk-prepared neuronal and glial cells. Brain Res. 1976;112(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  • Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, et al. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol. 1999;375(1–3):367–74.

    Article  CAS  PubMed  Google Scholar 

  • Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int. 1996;29(4):335–56.

    Article  CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL. Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem. 1992;267(29):21098–104.

    CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL. Cloning and expression of a betaine/Gaba transporter from human brain. J Neurochem. 1995;64(3):977–84.

    Article  CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJ, Andersen KE, Jansen JA, et al. (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem. 1990;54(2):639–47.

    Article  CAS  PubMed  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA. Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol. 2002;136(7):965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, et al. Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem. 2005;13(3):895–908.

    Article  CAS  PubMed  Google Scholar 

  • Clausen RP, Madsen K, Larsson OM, Frolund B, Krogsgaard-Larsen P, Schousboe A. Structure-activity relationship and pharmacology of gamma-aminobutyric acid (GABA) transport inhibitors. Adv Pharmacol. 2006;54:265–84.

    Article  CAS  PubMed  Google Scholar 

  • Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532(7599):334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A. Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol. 1998;396(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M. Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol. 1999;409(3):482–94.

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Rev. 2004;45(3):196–212.

    Article  CAS  PubMed  Google Scholar 

  • Damgaard M, Al-Khawaja A, Vogensen SB, Jurik A, Sijm M, Lie MEK, et al. Identification of the first highly subtype-selective inhibitor of human GABA transporter GAT3. ACS Chem Neurosci. 2015;6(9):1591–9.

    Article  CAS  PubMed  Google Scholar 

  • Dhar TGM, Borden LA, Tyagarajan S, Smith KE, Branchek TA, Weinshank RL, et al. Design, synthesis and evaluation of substituted triarylnipecotic acid-derivatives as Gaba uptake inhibitors – identification of a ligand with moderate affinity and selectivity for the cloned human Gaba transporter Gat-3. J Med Chem. 1994;37(15):2334–42.

    Article  CAS  PubMed  Google Scholar 

  • Falch E, Perregaard J, FrLlund B, Søkilde B, Buur A, Hansen LM, et al. Selective inhibitors of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and analogues. J Med Chem. 1999;42(26):5402–14.

    Article  CAS  PubMed  Google Scholar 

  • Fjalland B. Inhibition by neuroleptics of uptake of 3H-GABA into rat brain synaptosomes. Acta Pharmacol Toxicol (Copenh). 1978;42(1):73–6.

    Article  CAS  Google Scholar 

  • Fülep GH, Hoesl CE, Hofner G, Wanner KT. New highly potent GABA uptake inhibitors selective for GAT-1 and GAT-3 derived from (R)- and (S)-proline and homologous pyrrolidine-2-alkanoic acids. Eur J Med Chem. 2006;41(7):809–24.

    Article  PubMed  Google Scholar 

  • Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A. Preparation of primary cultures of mouse cortical neurons. In: Shahar A, de Vellis J, Vernadakis A, Haber B, editors. A dissection and tissue culture manual of the nervous system, vol. 40. New York: Alan R. Liss, Inc.; 1989a. p. 183–6.

    Google Scholar 

  • Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A. Preparation of primary cultures of mouse (rat) astrocyte. In: Shahar A, de Vellis J, Vernadakis A, Haber B, editors. A dissection and tissue culture manual of the nervous system, vol. 21. New York: Alan R. Liss, Inc.; 1989b. p. 105–8.

    Google Scholar 

  • Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF. A binding mode hypothesis of tiagabine confirms liothyronine effect on gamma-aminobutyric acid transporter 1 (GAT1). J Med Chem. 2015;58(5):2149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalviainen R. Long-term safety of tiagabine. Epilepsia. 2001;42(Suppl 3):46–8.

    Article  PubMed  Google Scholar 

  • Kanner BI. Transmembrane domain I of the gamma-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. J Biol Chem. 2003;278(6):3705–12.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Suemasa A, Igawa A, Ide S, Fukuda H, Abe H, et al. Conformationally restricted GABA with bicyclo[3.1.0]hexane backbone as the first highly selective BGT-1 inhibitor. ACS Med Chem Lett. 2014;5(8):889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kragholm B, Kvist T, Madsen KK, Jorgensen L, Vogensen SB, Schousboe A, et al. Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochem Pharmacol. 2013;86(4):521–8.

    Article  CAS  PubMed  Google Scholar 

  • Kragler A, Hofner G, Wanner KT. Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur J Pharmacol. 2005;519(1–2):43–7.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585–640.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P. Inhibitors of the GABA uptake systems. Mol Cell Biochem. 1980;31(2):105–21.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Johnston GA. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975;25(6):797–802.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Brehm L, Schaumburg K. Muscimol, a psychoactive constituent of Amanita muscaria, as a medicinal chemical model structure. Acta Chem Scand B. 1981;35(5):311–24.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Falch E, Larsson OM, Schousboe A. GABA uptake inhibitors: relevance to antiepileptic drug research. Epilepsy Res. 1987;1(2):77–93.

    Article  CAS  PubMed  Google Scholar 

  • Kvist T, Christiansen B, Jensen AA, Brauner-Osborne H. The four human gamma-aminobutyric acid (GABA) transporters: pharmacological characterization and validation of a highly efficient screening assay. Comb Chem High Throughput Screen. 2009;12(3):241–9.

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther. 2001;90(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  • Lie MEK, Al-Khawaja A, Damgaard M, Haugaard AS, Schousboe A, Clarkson AN, Wellendorph P. Glial GABA transporters as modulators of inhibitory signalling in epilepsy and stroke. Adv Neurobiol. 2017; 16, in press.

    Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem. 1993;268(3):2106–12.

    CAS  PubMed  Google Scholar 

  • Madsen KK, White HS, Schousboe A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther. 2010;125(3):394–401.

    Article  CAS  PubMed  Google Scholar 

  • Melone M, Barbaresi P, Fattorini G, Conti F. Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: a procedural artifact? J Chem Neuroanat. 2005;30(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  • Nakada K, Yoshikawa M, Ide S, Suemasa A, Kawamura S, Kobayashi T, et al. Cyclopropane-based conformational restriction of GABA by a stereochemical diversity-oriented strategy: identification of an efficient lead for potent inhibitors of GABA transports. Bioorg Med Chem. 2013;21(17):4938–50.

    Article  CAS  PubMed  Google Scholar 

  • Pabel J, Faust M, Prehn C, Wörlein B, Allmendinger L, Höfner G, et al. Development of an (S)-1-{2-[Tris(4-methoxyphenyl)methoxy]ethyl}piperidine-3-carboxylic acid [(S)-SNAP-5114] carba analogue inhibitor for murine γ-aminobutyric acid transporter type 4. ChemMedChem. 2012;7(7):1245–55.

    Article  CAS  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503(7474):85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen JG, Sorensen T, Damgaard M, Nielsen B, Jensen AA, Balle T, et al. Synthesis and pharmacological evaluation of 6-aminonicotinic acid analogues as novel GABA(A) receptor agonists. Eur J Med Chem. 2014;84:404–16.

    Article  CAS  PubMed  Google Scholar 

  • Petrera M, Wein T, Allmendinger L, Sindelar M, Pabel J, Hofner G, et al. Development of highly potent GAT1 inhibitors: synthesis of nipecotic acid derivatives by Suzuki-Miyaura cross-coupling reactions. ChemMedChem. 2016;11(5):519–38.

    Article  CAS  PubMed  Google Scholar 

  • Schaffert ES, Hofner G, Wanner KT. Aminomethyltetrazoles as potential inhibitors of the gamma-aminobutyric acid transporters mGAT1-mGAT4: synthesis and biological evaluation. Bioorg Med Chem. 2011;19(21):6492–504.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger A, Wittwer MB, Dahlin A, Khuri N, Bonomi M, Fan H, et al. High selectivity of the gamma-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structure-based approach. J Biol Chem. 2012;287(45):37745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Hofner G, Wanner KT. Application of MS transport assays to the four human gamma-aminobutyric acid transporters. ChemMedChem. 2015;10(9):1498–510.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Thorbek P, Hertz L, Krogsgaard-Larsen P. Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J Neurochem. 1979;33(1):181–9.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Larsson OM, Hertz L, Krogsgaard-Larsen P. Heterocyclic GABA analogues as selective inhibitors of astroglial GABA uptake. Adv Biochem Psychopharmacol. 1981;29:135–41.

    CAS  PubMed  Google Scholar 

  • Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P. Transport and metabolism of gamma-aminobutyric acid in neurons and glia: implications for epilepsy. Epilepsia. 1983;24(5):531–8.

    Google Scholar 

  • Schousboe A, Wellendorph P, Frølund B, Clausen RP, Krogsgaard-Larsen P. Astrocytic GABA-transporters: pharmacological properties and targets for antiepileptic drugs. Adv Nerobiol. 2017; 16, in press.

    Google Scholar 

  • Skovstrup S, Taboureau O, Brauner-Osborne H, Jorgensen FS. Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem. 2010;5(7):986–1000.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen C, Sorensen PO, Egebjerg J. 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br J Pharmacol. 1997;120(6):983–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(Suppl 3):8–12.

    Article  PubMed  Google Scholar 

  • Vogensen SB, Jorgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, et al. Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem. 2013;56(5):2160–4.

    Article  CAS  PubMed  Google Scholar 

  • Vogensen SB, Jorgensen L, Madsen KK, Jurik A, Borkar N, Rosatelli E, et al. Structure activity relationship of selective GABA uptake inhibitors. Bioorg Med Chem. 2015;23(10):2480–8.

    Article  CAS  PubMed  Google Scholar 

  • Wein T, Wanner KT. Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. J Mol Model. 2010;16(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  • Wein T, Petrera M, Allmendinger L, Hofner G, Pabel J, Wanner KT. Different binding modes of small and large binders of GAT1. ChemMedChem. 2016;11(5):509–18.

    Article  CAS  PubMed  Google Scholar 

  • White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, et al. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther. 2002;302(2):636–44.

    Article  CAS  PubMed  Google Scholar 

  • White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, et al. First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther. 2005;312(2):866–74.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, ** Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature. 2005;437(7056):215–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

SK and GE acknowledge funding provided by to the Austrian Science Fund (MolTag, grant # W1232).

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Frølund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Damgaard, M. et al. (2017). Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_16

Download citation

Publish with us

Policies and ethics

Navigation