GlyT-1 Inhibitors: From Hits to Clinical Candidates

  • Chapter
  • First Online:
Small Molecule Therapeutics for Schizophrenia

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 13))

  • 1171 Accesses

Abstract

The treatment of schizophrenia has long been dominated by aminergic receptor antagonist-based therapeutics largely founded on the dopamine hypothesis of schizophrenia. More recently the glutamatergic theory has come to the fore which may potentially address some of the deficiencies of current therapies. While there are many approaches to manipulating the glutamatergic system, the most advanced approach is to increase synaptic concentrations of the NMDA receptor co-agonist glycine via inhibition of the glycine transporter 1 (GlyT-1). Here we will describe the background biological rationale for this approach and review the diverse classes of compounds which have been identified as GlyT-1 inhibitors with particular focus on the identification of those molecules which have entered the clinical stages of development. The role of target kinetics in drug action, a review of the rich vein of PET ligand development and their use in clinical development and the status of clinical-stage compounds will be addressed. Finally there is a discussion of some of the issues that have arisen with the discovery and development of GlyT-1 inhibitors and the prospects for the future of this mechanistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADMET:

Adsorption, distribution, metabolism, excretion, toxicity

ASST:

Attentional set-shifting task in rats

CADSS:

Clinician administered dissociative symptoms scale

CAR:

Conditioned avoidance response

CBT:

Cognitive-behavioural therapy

CSF:

Cerebrospinal fluid

DAAO:

d-Amino acid oxidase

DAT:

Dopamine transporter

EEG:

Electroencephalogram

EPSCs:

Excitatory postsynaptic currents

ErbB4:

Receptor tyrosine-protein kinase erbB-4

Gly:

Glycine

GlyB:

Strychnine-insensitive glycine-B subunit

GlyR:

Glycine receptor

GlyT-1:

Glycine transporter-1

GlyT-2:

Glycine transporter-2

h:

Hour(s)

hERG:

Human ether-à-go-go-related gene

HTS:

High-throughput screening

i.v.:

Intravenous

kg:

Kilogram

LeuT:

Leucine transporter

LeuTAa:

Leucine transporter from Aquifex aeolicus

LTP:

Long-term potentiation

mPFC:

Medial prefrontal cortex

MED:

Minimum effective dose

MEST:

Maximal electroshock test

NMDA:

N-Methyl-d-aspartic acid

NR1:

NMDA receptor subunit-1

NRG-1:

Neuregulin receptor 1

ORD:

Object retrieval–detour

p.o.:

Per os

PANNS:

Positive and negative syndrome scale

PCP:

Phencyclidine

PDSS:

Panic Disorder Severity Scale

PET:

Positron emission tomography

PFC:

Prefrontal cortex

P-gp:

P-glycoprotein

PK:

Pharmacokinetics

PPB:

Plasma protein binding

s.c.:

Subcutaneous

SAR:

Structure activity relationship

SSRI:

Selective serotonin reuptake inhibitor

SRR:

Serine racemase

TCA:

Tricyclic antidepressant

TM:

Transmembrane helix

WT:

Wild type

References

  1. Lahti AC, Weiler MA, Tamara Michaelidis BA et al (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacol 5:455–467

    Google Scholar 

  2. Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 9:12–35

    CAS  Google Scholar 

  3. Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  Google Scholar 

  4. Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419

    CAS  Google Scholar 

  5. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    CAS  Google Scholar 

  6. Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884

    CAS  Google Scholar 

  7. Hahn CG, Wang HY, Cho DS et al (2006) Altered neuregulin 1-ErbB4 signalling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824–828

    CAS  Google Scholar 

  8. Newell KA, Karl T, Huang XF (2013) A neuregulin 1 transmembrane domain mutation causes imbalanced glutamatergic and dopaminergic receptor expression in mice. Neurosci 248:670–680

    CAS  Google Scholar 

  9. Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99:13675–13680

    CAS  Google Scholar 

  10. Abou Jamra R, Schmael C, Cichon S et al (2006) Genes and Schizophrenia. The G72/G30 gene locus in psychiatric disorders: a challenge to diagnostic boundaries? Schizophr Bull 32:599–608

    Google Scholar 

  11. Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 60:106–114

    CAS  Google Scholar 

  12. Burnet PJ, Hutchinson L, von Hesling M et al (2008) Expression of D-serine and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. Schizophr Res 102:283–294

    CAS  Google Scholar 

  13. Verrall L, Walker M, Rawlings N et al (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669

    Google Scholar 

  14. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    CAS  Google Scholar 

  15. Goltsov AY, Loseva JG, Andreeva TV et al (2006) Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry 11:325–326

    CAS  Google Scholar 

  16. Morita Y, Ujike H, Tanaka Y et al (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    CAS  Google Scholar 

  17. Steffek AE, Haroutunian V, Meador-Woodruff JH (2006) Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 17:1181–1185

    CAS  Google Scholar 

  18. Heresco-Levy U, Javitt DC, Ermilov M et al (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169:610–617

    CAS  Google Scholar 

  19. Heresco-Levy U, Javitt DC, Ermilov M et al (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    CAS  Google Scholar 

  20. Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Google Scholar 

  21. Javitt DC, Zylberman I, Zukin SR et al (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    CAS  Google Scholar 

  22. Tsai G, Yang P, Chung LC et al (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    CAS  Google Scholar 

  23. Carone FA, Ganote CE (1975) D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol 99:658–662

    CAS  Google Scholar 

  24. Eulenburg V, Armsen W, Betz H et al (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 30:325–333

    CAS  Google Scholar 

  25. Guastella J, Brecha N, Weigmann C et al (1992) Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci U S A 89:7189–7193

    CAS  Google Scholar 

  26. Liu QR, Nelson H, Mandiyan S, López-Corcuera B et al (1992) Cloning and expression of a glycine transporter from mouse brain. FEBS Lett 305:110–114

    CAS  Google Scholar 

  27. Dohi T, Morita K, Kitayama T et al (2009) Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain. Pharmacol Ther 123:54–79

    CAS  Google Scholar 

  28. Supplisson S, Roux MJ (2002) Why glycine transporters have different stoichiometries. FEBS Lett 529:93–101

    CAS  Google Scholar 

  29. Hanley JG, Jones EMC, Moss SJ (2000) GABA receptor ρ1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. J Biol Chem 275:840–846

    CAS  Google Scholar 

  30. Ponce J, Poyatos I, Aragón C et al (1998) Characterization of the 5′region of the rat brain glycine transporter GLYT2 gene: identification of a novel isoform. Neurosci Lett 242:25–28

    CAS  Google Scholar 

  31. Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97:1600–1610

    CAS  Google Scholar 

  32. Gomeza J, Hülsmann S, Ohno K et al (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796

    CAS  Google Scholar 

  33. Gomeza J, Ohno K, Hülsmann S et al (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40:797–806

    CAS  Google Scholar 

  34. Gabernet L, Pauly-Evers M, Schwerdel C et al (2005) Enhancement of the NMDA receptor function by reduction of glycine transporter-1 expression. Neurosci Lett 373:79–84

    CAS  Google Scholar 

  35. Gomeza J, Armsen W, Betz H et al (2006) Lessons from the knocked-out glycine transporters. Handb Exp Pharmacol 175:457–483

    CAS  Google Scholar 

  36. Yee BK, Balic E, Singer P et al (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci 26:3169–3181

    CAS  Google Scholar 

  37. Aroeira RI, Sebastião AM, Valente CA (2013) GlyT1 and GlyT2 in brain astrocytes: expression, distribution and function. Brain Struct Funct 219:817–830

    Google Scholar 

  38. Raiteri L, Stigliani S, Usai C et al (2008) Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochem Int 52:103–112

    CAS  Google Scholar 

  39. Kristensen AS, Andersen J, Jørgensen TN et al (2011) SLC6 Neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    CAS  Google Scholar 

  40. Yamashita A, Singh SK, Kawate T et al (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437:215–223

    CAS  Google Scholar 

  41. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–95

    CAS  Google Scholar 

  42. Singh SK, Piscitelli CL, Yamashita A et al (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–1661

    CAS  Google Scholar 

  43. Zhou Z, Zhen J, Karpowich NK et al (2009) Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 16:652–657

    CAS  Google Scholar 

  44. Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–956

    CAS  Google Scholar 

  45. Zhou Z, Zhen J, Karpowich NK et al (2007) LeuT-desipramine structure suggests how antidepressants human neurotransmitter transporters. Science 317:1390–1393

    CAS  Google Scholar 

  46. Wang H, Goehring A, Wang KH et al (2013) Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503:141–145

    CAS  Google Scholar 

  47. Ponce J, Biton B, Benavides J et al (2007) Transmembrane domain III plays an important role in ion binding and permeation in the glycine transporter GLYT2. J Biol Chem 275:13856–13862

    Google Scholar 

  48. Harsing LG, Zsilla G, Matyus P et al (2012) Interactions between glycine transporter type 1 (GlyT-1) and some inhibitor molecules - glycine transporter type 1 and its inhibitors (review). Acta Physiol Hung 99(1):1–17

    CAS  Google Scholar 

  49. Vandenberg RJ, Shaddick K, Ju P (2007) Molecular basis for substrate discrimination by glycine transporters. J Biol Chem 282:14447–14453

    CAS  Google Scholar 

  50. Scanlon SM, Williams DC, Schloss P (2001) Membrane cholesterol modulates serotonin transporter activity. Biochem 40:10507–10513

    CAS  Google Scholar 

  51. Hong WC, Amara SG (2010) Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J Biol Chem 285:32616–32626

    CAS  Google Scholar 

  52. Liu X, Mitrovic AD, Vandenberg RJ (2009) Glycine transporter 1 associates with cholesterol-rich membrane raft microdomains. Biochem Biophys Res Commun 384:530–534

    CAS  Google Scholar 

  53. Núñez E, Alonso-Torres P, Fornés A et al (2008) The neuronal glycine transporter GLYT2 associates with membrane rafts: functional modulation by lipid environment. J Neurochem 105:2080–2090

    Google Scholar 

  54. Nunez E, Martinez-Maza R, Geerlings A et al (2005) Transmembrane domains 1 and 3 of the glycine transporter GLYT1 contain structural determinants of N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)-propyl]sarcosine specificity. Neuropharmacol 49:922–934

    CAS  Google Scholar 

  55. Vandenberg RJ (2006) Mutational analysis of glutamate transporters. Handb Exp Pharmacol 175:113–135

    CAS  Google Scholar 

  56. Gabrielsen M, Sylte I, Dahl SG et al (2011) A short update on the structure of drug binding sites on neurotransmitter transporters. BMC Res Notes 4(Proc Suppl):559

    CAS  Google Scholar 

  57. Thomas JR, Gedeon PC, Grant BJ et al (2012) LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis. Biophys J 103:L01–L03

    Google Scholar 

  58. Bridges TM, Williams R, Lindsley CW (2008) Design of potent GlyT1 inhibitors: in vitro and in vivo profiles. Curr Opin Mol Ther 10:591–601

    CAS  Google Scholar 

  59. Cioffi CL, Liu S, Wolf M (2010) In: Recent developments in glycine transporter-1 inhibitors. In: Macor JE (ed) Annual Reports in Medicinal Chemistry, vol 45. Academic Press, pp 19–35

    Google Scholar 

  60. Gilfillan R, Kerr J, Walker G et al (2009) Glycine transporters and their inhibitors. In: Napier S, Bingham M (eds) Transporters as targets for drugs, vol 4, Top Med Chem. Springer, Heidelberg, pp 223–248

    Google Scholar 

  61. Harsing LG, Juranyi Z, Gacsalyi I et al (2006) Glycine transporter type-1 and its inhibitors. Curr Med Chem 13:1017–1044

    CAS  Google Scholar 

  62. Harsing LG (2013) An overview on GlyT-1 inhibitors under evaluation for the treatment of schizophrenia. Drugs Future 38:555–568

    Google Scholar 

  63. Harvey RJ, Yee BJ (2013) Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Disc 12:866–885

    CAS  Google Scholar 

  64. Hashimoto K (2006) Glycine transporter inhibitors as therapeutic agents for schizophrenia. Recent Pat CNS Drug Discov 1:43–53

    CAS  Google Scholar 

  65. Lechner SM (2006) Glutamate-based therapeutic approaches: inhibitors of glycine transport. Curr Opin Pharmacol 6:75–81

    CAS  Google Scholar 

  66. Lindsley CW, Wolkenberg SE, Kinney GG (2006) Progress in the preparation and testing of glycine transporter type-1 (GlyT1) inhibitors. Curr Top Med Chem 6:1883–1896

    CAS  Google Scholar 

  67. Thomsen C (2006) Glycine transporter inhibitors as novel antipsychotics. Drug Discov Today Ther Strateg 3:539–545

    Google Scholar 

  68. Wolkenberg SE, Sur C (2010) Recent progress in the discovery of non-sarcosine based GlyT1 inhibitors. Curr Top Med Chem 10:170–186

    CAS  Google Scholar 

  69. Herdon HJ, Godfrey FM, Brown AM et al (2001) Pharmacological assessment of the role of the glycine transporter GlyT-1 in mediating high-affinity glycine uptake by rat cerebral cortex and cerebellum synaptosomes. Neuropharmacol 41:88–96

    CAS  Google Scholar 

  70. Atkinson BN, Bell SC, De Vivo M et al (2001) ALX 5407: a potent, selective inhibitor of the hGlyT1 Glycine transporter. Mol Pharmacol 60:1414–1420

    CAS  Google Scholar 

  71. Brown A, Carlyle I, Clark J et al (2001) Discovery and SAR of Org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett 11:2007–2009

    CAS  Google Scholar 

  72. Mallorga PJ, Williams JB, Jacobson M et al (2003) Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4′-fluorophenyl)-3-(4′phenylphenoxy)propyl])sarcosine. Neuropharmacol 45:585–593

    CAS  Google Scholar 

  73. Harsing LG Jr, Gacsalyi I, Szabo G et al (2003) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825

    CAS  Google Scholar 

  74. Perry KW, Falcone JF, Fell MJ et al (2008) Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacol 55:743–754

    CAS  Google Scholar 

  75. Bergeron R, Meyer TM, Coyle JT et al (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A 95:15730–15734

    CAS  Google Scholar 

  76. Chen L, Muhlhauser M, Yang CR (2003) Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    CAS  Google Scholar 

  77. Kinney GG, Sur C, Burno M et al (2003) The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behaviour. J Neurosci 23:7586–7591

    CAS  Google Scholar 

  78. Manahan-Vaughan D, Wildförster V, Thomsen C (2008) Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur J Neurosci 28:1342–1350

    Google Scholar 

  79. Hashimoto K, Fujita Y, Ishima T et al (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine. Eur Neuropsychopharmacol 18:414–421

    CAS  Google Scholar 

  80. Karasawa J, Hashimoto K, Chaki S (2008) D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 186:78–83

    CAS  Google Scholar 

  81. Shimazaki T, Kaku A, Chaki S (2010) D-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacol (Berl) 209:263–270

    CAS  Google Scholar 

  82. Bennett S, Gronier B (2005) Modulation of striatal dopamine release in vitro by agonists of the glycine B site of NMDA receptors; interaction with antipsychotics. Eur J Pharmacol 527:52–59

    CAS  Google Scholar 

  83. Javitt DC, Duncan L, Balla A et al (2005) Inhibition of System A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10:275–286

    CAS  Google Scholar 

  84. Javitt DC, Balla A, Burch S et al (2004) Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacol 29:300–307

    CAS  Google Scholar 

  85. Aubrey KR, Vandenberg RJ (2001) N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS) is a selective persistent inhibitor of glycine transport. Br J Pharmacol 134:1429–1436

    CAS  Google Scholar 

  86. Martina M, Gorfinkel Y, Halman S et al (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. NPTS analogue CP802,079. J Physiol 557:489–500

    CAS  Google Scholar 

  87. Papp A, Juranyi Z, Nagymajtenyi L et al (2008) The synaptic and nonsynaptic glycine transporter type-1 inhibitors Org-24461 and NFPS alter single neuron firing rate in the rat dorsal raphe nucleus. Further evidence for a glutamatergic-serotonergic interaction and its role in antipsychotic action. Neurochem Int 52:130–134

    CAS  Google Scholar 

  88. Nagy K, Marko B, Zsilla G et al (2010) Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone. Neurochem Res 35:2096–2106

    CAS  Google Scholar 

  89. Liu X, Smith BJ, Chen C et al (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    CAS  Google Scholar 

  90. Lowe JA, Drozda SE, Fisher K et al (2003) [3H]-(R)-NPTS, a radioligand for the type 1 glycine transporter. Bioorg Med Chem Lett 13:1291–1292

    CAS  Google Scholar 

  91. Man T, Milot G, Porter WJ et al (2005) 2-aryloxyethyl glycine derivatives and their use as glycine transport inhibitors Eli Lilly Patent application WO2005/100301-A1, 27 Oct 2005

    Google Scholar 

  92. Walter MW, Hoffman BJ, Gordon K et al (2007) Discovery and SAR studies of novel GlyT1 inhibitors. Bioorg Med Chem Lett 17:5233–5238

    CAS  Google Scholar 

  93. Thomson CG, Duncan K, Fletcher SR et al (2006) Sarcosine based indandione hGlyT1 inhibitors. Bioorg Med Chem Lett 16(5):1388–1391

    CAS  Google Scholar 

  94. Smith G, Ruhland T, Mikkelsen G et al (2004) The synthesis and SAR of 2-arylsulfanyl-phenyl piperazinyl acetic acids as glyT-1 inhibitors. Bioorg Med Chem Lett 14:4027–4030

    CAS  Google Scholar 

  95. Smith G, Mikkelsen G, Eskildsen J, Bundgaard C (2006) The synthesis and SAR of 2-arylsulfanylphenyl-1-oxyalkylamino acids as GlyT-1 inhibitors. Bioorg Med Chem Lett 16:3981–3984

    CAS  Google Scholar 

  96. Egle I, Frey J, Isaac M (2001a) Diaryl-enynes WO 2001/032602-A1, 10 May 2001

    Google Scholar 

  97. Liem-Moolenaar M, Zoethout RWM, de Boer P et al (2010) The effects of the glycine reuptake inhibitor R213129 on the central nervous system and on scopolamine-induced impairments in psychomotor and cognitive function in healthy subjects. J Psychopharmacol 24:1671–1676

    CAS  Google Scholar 

  98. Liem-Moolenaar M, Zoethout RW, de Boer P et al (2010) The effects of a glycine reuptake inhibitor R231857 on the central nervous system and on scopolamine-induced impairments in cognitive and psychomotor function in healthy subjects. J Psychopharmacol 24:1681–1687

    CAS  Google Scholar 

  99. Hitchcock S, Amagadzie A, Qian W et al (2008) Glycine transporter-1 inhibitors WO2008/002583-A1, 3 Jan 2008

    Google Scholar 

  100. Lidö HH, Stomberg R, Fagerberg A et al (2009) The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens. Alcohol Clin Exp Res 33:1151–1157

    Google Scholar 

  101. Andrews N, Ge J, Walker G et al (2007) Effect of the selective glycine re-uptake (GlyT-1) inhibitor Org 25935 on glycine levels in CSF and dialysates. Eur Neuropsychopharmacol 17(Suppl 4):S497–S498

    Google Scholar 

  102. Ge J, Hamilton M, Shahid D et al (2001) The effects of Org 25935 on the extracellular levels of glycine in brain regions of freely moving rats using microdialysis. Br J Pharmacol 133(Proc Suppl):135

    Google Scholar 

  103. Jardemark K, Marcus MM, Malmerfelt A et al (2012) Differential effects of AMPA receptor potentiators and glycine reuptake inhibitors on antipsychotic efficacy and prefrontal glutamatergic transmission. Psychopharmacol (Berl) 221:115–131

    CAS  Google Scholar 

  104. Balla A, Schneider S, Sershen H et al (2012) Effects of novel, high affinity glycine transport inhibitors on frontostriatal dopamine release in a rodent model of schizophrenia. Eur Neuropsychopharmacol 22:902–910

    CAS  Google Scholar 

  105. Molander A, Söderpalm B (2005) Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system. Alcohol Clin Exp Res 29:27–37

    CAS  Google Scholar 

  106. Eddins D, Hamill TG, Puri V et al (2014) The relationship between glycine transporter 1 occupancy and the effects of the glycine transporter 1 inhibitor RG1678 or ORG25935 on object retrieval performance in scopolamine impaired rhesus monkey. Psychopharmacol (Berl) 231:511–519

    CAS  Google Scholar 

  107. Dargazanli G, Estenne-Bouhtou G, Magat P et al (2003). Preparation of N-[phenyl(piperidin-2-yl)methyl]benzamides as specific inhibitors of glycine transporters GlyT1 and/or GlyT2. Patent WO2003/089411-A1, 30 Oct 2003

    Google Scholar 

  108. Zlotinikov E, Wu X-D, Lieberman H et al (2010) Novel polymorphic forms of an azabicyclo-trifluoromethylbenzamide WO 2010/065701-A1, 10 June 2010

    Google Scholar 

  109. Darganzali G, Estenne-Bouhtou G, Magat P et al (2005) Use of tricyclic compounds as glycine transport inhibitors WO2005/037783-A228 April 2005

    Google Scholar 

  110. Depoortère R, Dargazanli G, Estenne-Bouhtou G et al (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacol 30:1963–1985

    Google Scholar 

  111. Nikiforuk A, Kos T, Rafa D et al (2011) Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner. Neuropharmacol 61:262–267

    CAS  Google Scholar 

  112. Black MD, Varty GB, Arad M et al (2009) Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacol (Berl) 202:385–396

    CAS  Google Scholar 

  113. Nishikawa H, Inoue T, Izumi T et al (2010) SSR504734, a glycine transporter-1 inhibitor, attenuates acquisition and expression of contextual conditioned fear in rats. Behav Pharmacol 21:576–579

    CAS  Google Scholar 

  114. Singer P, Feldon J, Yee BK (2009) The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacol (Berl) 202:371–384

    CAS  Google Scholar 

  115. Boulay D, Pichat P, Dargazanli G et al (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav 91:47–58

    CAS  Google Scholar 

  116. Boulay D, Bergis O, Avenet P et al (2010) The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacol 35:416–427

    CAS  Google Scholar 

  117. Dargazanli G, Estenne-Bouhtou G, Medaisko F et al (2005b) Derivatives of N-[phenyl(pyrrolidine-2-yl)methyl]benzamide and N-[(azepan-2-yl)phenylmethyl]benzamide, preparation method thereof and application of same in therapeutics WO2005/037785-A2, 28 April 2005

    Google Scholar 

  118. Dargazanli G, Estenne-Bouhtou G, Medaisko F et al (2008) Derivatives of pyrrolizine, indolizine and quinolizine, preparation thereof and therapeutic use thereof WO2008/037881-A2, 3 April 2008

    Google Scholar 

  119. Gentile G, Herdon HJ, Passchier J et al (2007) Radiolabelled ligand for the glycine 1 transporter WO2007/147838-A1, 27 Dec 2007

    Google Scholar 

  120. Bradley DM, Branch CL, Chan WN et al (2006) Glycine transport inhibitors WO2006/067423-A1, 29 June 2006

    Google Scholar 

  121. Griffini P, James AD, Roberts AD et al (2010) Metabolites in safety testing: issues and approaches to the safety evaluation of human metabolites in a drug that is extensively metabolized. J Drug Metabol Toxicol 1:102

    Google Scholar 

  122. Albert JS, Alhambra C, Brugel TA et al (2009) 2-Azabicyclo(2.2.2)octane derivatives as modulators of the glycine transporter-1 receptor WO2009/013535-A1, 29 Jan 2009

    Google Scholar 

  123. Albert JS, Alhambra C, Brugel TA (2010a) 2-Azabicyclo[2.2.2]octane compounds and uses thereof WO2010/087761-A1, 5 Aug 2010

    Google Scholar 

  124. Albert JS, Alhambra C, Brugel TA et al (2010b) 2-Aza-bicyclo[2.2.1]heptane compounds and uses thereof WO2010/087762-A1, 5 Aug 2010

    Google Scholar 

  125. Sekiguchi Y, Okubo T, Shibata T et al (2008) Glycine transporter inhibitor WO2008/018639, 14 Feb 2008

    Google Scholar 

  126. Kolczewski S, Pinard E (2011) Amido-tropane derivatives F. Hoffmann-La Roche AG WO2011/161006-A1, 29 Dec 2011

    Google Scholar 

  127. Kolczewski S, Pinard E (2011) Quinolizidine and indolizidine derivatives F. Hoffmann-La Roche AG WO2011/161008-A1, 29 Dec 2011

    Google Scholar 

  128. Lowe JA, Hou X, Schmidt C et al (2009) The discovery of a structurally novel class of inhibitors of the type 1 glycine transporter. Bioorg Med Chem Lett 19:2974–2976

    CAS  Google Scholar 

  129. Lowe JA III, DeNinno S, Drozda SE et al (2010) An octahydro-cyclopenta[c]pyrrole series of inhibitors of the type 1 glycine transporter. Bioorg Med Chem Lett 20:907–911

    CAS  Google Scholar 

  130. Berliner MA, Dubant SPA, Makowski T et al (2011) Use of an iridium-catalyzed redox-neutral alcohol-amine coupling on kilogram scale for the synthesis of a GlyT1 inhibitor. Org Process Res Dev 15:1052–1062

    CAS  Google Scholar 

  131. Roberts BM, Shaffer CL, Seymour PA et al (2010) Glycine transporter inhibition reverses ketamine-induced working memory deficits. Neuroreport 21:390–394

    CAS  Google Scholar 

  132. Pfizer Inc. PF-03463275. http://www.ncats.nih.gov/files/PF-03463275.pdf. Accessed 22 Jan 2014

  133. Kolczewski S, Pinard E (2011) Tetrahydro-pyran derivatives against neurological illnesses F. Hoffmann-La Roche AG WO2011/095434-A1, 11 Aug 2011

    Google Scholar 

  134. Varnes JG, Forst JM, Hoerter TN et al (2010) Identification of N-(2-(azepan-1-yl)-2-phenylethyl)-benzenesulfonamides as novel inhibitors of GlyT1. Bioorg Med Chem Lett 20:4878–4881

    CAS  Google Scholar 

  135. Cioffi CL, Wolf MA, Guzzo PR et al (2013) Design, synthesis, and SAR of N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1. Bioorg Med Chem Lett 23:1257–1261

    CAS  Google Scholar 

  136. Mhyre AJ, Cioffi CL, Beebe AJ et al (2011) A novel series of GlyT-1 inhibitors for treating schizophrenia: is binding competitively with glycine important? Abstr Soc Neurosci 899:10

    Google Scholar 

  137. Pinard E, Ceccarelli SM, Stalder H et al (2006) Discovery of N-(2-aryl-cyclohexyl)substituted spiropiperidines as a novel class of GlyT1 inhibitors. Bioorg Med Chem Lett 16:349–353

    CAS  Google Scholar 

  138. Alberati D, Ceccarelli SM, Jolidon S et al (2006) Design and synthesis of 4-substituted-8-(2-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one as a novel class of GlyT1 inhibitors: achieving selectivity against the mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors. Bioorg Med Chem Lett 16:4305–4310

    CAS  Google Scholar 

  139. Alberati D, Hainzl D, Jolidon S et al (2006) Discovery of 4-substituted-8-(2-hydroxy-2-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one as a novel class of highly selective GlyT1 inhibitors with improved metabolic stability. Bioorg Med Chem Lett 16:4311–4315

    CAS  Google Scholar 

  140. Alberati D, Hainzl D, Jolidon S et al (2006) 4-Substituted-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one as a novel class of highly selective GlyT1 inhibitors with superior pharmacological and pharmacokinetic parameters. Bioorg Med Chem Lett 16:4321–4325

    CAS  Google Scholar 

  141. Ceccarelli SM, Pinard E, Stalder H et al (2006) Discovery of N-(2-hydroxy-2-aryl-cyclohexyl) substituted spiropiperidines as GlyT1 antagonists with improved pharmacological profile. Bioorg Med Chem Lett 16:354–357

    CAS  Google Scholar 

  142. Nic Dhonnchadha BÁ, Pinard E, Alberati D et al (2012) Inhibiting glycine transporter-1 facilitates cocaine-cue extinction and attenuates reacquisition of cocaine-seeking behavior. Drug Alcohol Depend 122:119–126

    CAS  Google Scholar 

  143. Amberg W, Ochse M, Lange U et al (2012) Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy WO2012/020130-A1, 16 Feb 2012

    Google Scholar 

  144. Amberg W, Lange U, Pohlki F et al (2013) N-substituted aminobenzocycloheptene, aminotetraline, aminoindane and phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy WO2013/072520-A1, 23 May 2013

    Google Scholar 

  145. Egle IR, Frey J, Isaac MB et al (2001) Aminopiperidines WO2001/081308-A2, 1 Nov 2001

    Google Scholar 

  146. Rahman SS, Coulton S, Herdon HJ et al (2007) 1,3-Diaminopropan-2-ol sulfonamides as potent and selective inhibitors of the glycine transporter type 1. Bioorg Med Chem Lett 17:1741–1745

    CAS  Google Scholar 

  147. Kalinichev M, Starr KR, Teague S et al (2010) Glycine transporter 1 (GlyT1) inhibitors exhibit anticonvulsant properties in the rat maximal electroshock threshold (MEST) test. Brain Res 1331:105–113

    CAS  Google Scholar 

  148. Herdon HJ, Roberts JC, Coulton S et al (2010) Pharmacological characterisation of the GlyT-1 glycine transporter using two novel radioligands. Neuropharmacol 59:558–565

    CAS  Google Scholar 

  149. Lindsley CW, Conn JP, Williams R et al (2010) Vanderbilt University Alkylsulfonyl-2,3-dihydrospiro[indene-1,4′-piperidine] analogs as glyt1 inhibitors, methods for making same, and use of same in treating psychiatric disorders WO2010/102003-A2, 9 Oct 2010

    Google Scholar 

  150. Lindsley CW, Zhao Z, Leister WH et al (2006) Design, synthesis, and in vivo efficacy of glycine transporter-1 (GlyT1) inhibitors derived from a series of [4-phenyl-1-(propylsulfonyl)piperidin-4-yl]methyl benzamides. Chem Med Chem 1:807–811

    CAS  Google Scholar 

  151. Zhao Z, O’Brien JA, Lemaire W et al (2006) Synthesis and SAR of GlyT1 inhibitors derived from a series of N-((4-(morpholine-4-carbonyl)-1-(propylsulfonyl)piperidin-4-yl)methyl)benzamides. Bioorg Med Chem Lett 16:5968–5972

    CAS  Google Scholar 

  152. Zhao Z, Leister WH, O’Brien JA et al (2009) Discovery of N-{[1-(propylsulfonyl)-4-pyridin-2-ylpiperidin-4-yl]methyl}benzamides as novel, selective and potent GlyT1 inhibitors. Bioorg Med Chem Lett 19:1488–1491

    CAS  Google Scholar 

  153. Blackaby WP, Lewis RT, Thomson JL et al (2010) Identification of an orally bioavailable, potent, and selective inhibitor of GlyT1. ACS Med Chem Lett 1:350–354

    CAS  Google Scholar 

  154. Thomson JL, Blackaby WP, Jennings AS et al (2009) Optimisation of a series of potent, selective and orally bioavailable GlyT1 inhibitors. Bioorg Med Chem Lett 19:2235–2239

    CAS  Google Scholar 

  155. Wolkenberg SE, Zhao Z, Wisnoski DD et al (2009) Discovery of GlyT1 inhibitors with improved pharmacokinetic properties. Bioorg Med Chem Lett 19:1492–1495

    CAS  Google Scholar 

  156. Jones CK, Sheffler DJ, Williams R et al (2014) Novel GlyT1 inhibitor chemotypes by scaffold hop**. Part 1: development of a potent and CNS penetrant [3.1.0]-based lead. Bioorg Med Chem Lett 24:1067

    Google Scholar 

  157. Sheffler DJ, Nedelovych MT, Williams R et al (2014) Novel GlyT1 inhibitor chemotypes by scaffold hop**. Part 2: development of a [3.3.0]-based series and other piperidine bioisosteres. Bioorg Med Chem Lett 24:1062–1066

    CAS  Google Scholar 

  158. Sugane T, Tobe T, Hamaguchi W et al (2011) Synthesis and biological evaluation of 3-biphenyl-4-yl-4-phenyl-4H-1,2,4-triazoles as novel glycine transporter 1 inhibitors. J Med Chem 54:387–391

    CAS  Google Scholar 

  159. Sugane T, Tobe T, Hamaguchi W et al (2012) Synthesis and biological evaluation of (4H-1,2,4-triazol-4-yl)isoquinoline derivatives as selective glycine transporter 1 inhibitors. Bioorg Med Chem 20:34–41

    CAS  Google Scholar 

  160. Sugane T, Tobe T, Hamaguchi W et al (2013) Atropisomeric 4-phenyl-4H-1,2,4-triazoles as selective glycine transporter 1 inhibitors. J Med Chem 56:5744–5756

    CAS  Google Scholar 

  161. Sugane T, Hamada N, Tobe T et al (2012) Practical and efficient synthesis of the (R)-atropisomer of a 4-phenyl 1,2,4-triazole derivative as a selective GlyT1 inhibitor. Tetrahedron Asymmetry 23:1528–1533

    CAS  Google Scholar 

  162. Harada K, Nakato K, Yarimizu J et al (2012) A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer’s disease. Eur J Pharmacol 685:59–69

    CAS  Google Scholar 

  163. Pinard E, Alberati D, Borroni E et al (2008) Discovery of benzoylpiperazines as a novel class of potent and selective GlyT1 inhibitors. Bioorg Med Chem Lett 18:5134–5139

    CAS  Google Scholar 

  164. Pinard E, Alanine A, Alberati D et al (2010) Selective GlyT1 inhibitors: Discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J Med Chem 53:4603–4614

    CAS  Google Scholar 

  165. Alberati D, Moreau JL, Lengyel J et al (2012) Glycine reuptake inhibitor RG1678: a pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacol 62:1152–1161

    CAS  Google Scholar 

  166. Martin-Facklam M, Pizzagalli F, Zhou Y et al (2013) Glycine transporter type 1 occupancy by bitopertin: a positron emission tomography study in healthy volunteers. Neuropsychopharmacol 38:504–512

    CAS  Google Scholar 

  167. Umbricht D, Yoo K, Youssef E et al (2010) Glycine transporter type 1 (GLYT1) inhibitor RG1678: positive results of the proof‑of‑concept study for the treatment of negative symptoms in schizophrenia. Neuropsychopharmacol 35:S320–S321

    Google Scholar 

  168. Pinard E, Alberati D, Bender M et al (2010) Discovery of benzoylisoindolines as a novel class of potent, selective and orally active GlyT1 inhibitors. Bioorg Med Chem Lett 20:6960–6965

    CAS  Google Scholar 

  169. Jolidon S, Alberati D, Dowle A et al (2008) Design, synthesis and structure-activity relationship of simple bis-amides as potent inhibitors of GlyT1. Bioorg Med Chem Lett 18:5533–5536

    CAS  Google Scholar 

  170. Jolidon S, Narquizian R, Norcross R et al (2007) 4-amino-1,5-substituted 1,5-dihydro-imidazol-2-ones Hoffmann-La Roche Ag patent application WO2007/101802-A1, 13 Sept 2007

    Google Scholar 

  171. Coulton S, Marshall H, Nash DJ et al (2007) N-phenyl-2-0x0-1,4-diazaspiro [4.5] dec-3-en-1-yl acetamide derivatives and their use as glycine transporter inhibitors WO2007/104776-A1, 20 Sep 2007

    Google Scholar 

  172. Blunt R, Eatherton AJ, Garzya V et al (2011a) Benzoxazinone derivatives for the treatment of Glytl mediated disorders Glaxo Group Ltd WO2011/012622-A1, 3 Feb 2011

    Google Scholar 

  173. Blunt R, Porter R, Johns A et al (2011) Acylglycinamides as inhibitors of glycine transporter type 1. Bioorg Med Chem Lett 21:6176–6179

    CAS  Google Scholar 

  174. Terui Y, Chu YW, Li JY et al (2008) New cyclic tetrapeptides from Nonomuraea sp. TA-0426 that inhibit glycine transporter type 1 (GlyT1). Bioorg Med Chem Lett 18:6321–6323

    CAS  Google Scholar 

  175. Williams JB, Mallorga PJ, Conn PJ et al (2004) Effects of typical and atypical antipsychotics on human glycine transporters. Schizophr Res 71:103–112

    Google Scholar 

  176. Werdehausen R, Kremer D, Brandenburger T et al (2012) Lidocaine metabolites inhibit GlyT-1: A novel mechanism for the analgesic action of Lidocaine. Anesthesiol 116:147–158

    CAS  Google Scholar 

  177. Kopec K, Flood DG, Gasior M et al (2010) Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochem Pharmacol 80:1407–1417

    CAS  Google Scholar 

  178. Ravert HT, Mathews WB, Klitenick MA et al (2001) Radiosynthesis of a ligand for studying the glycine transporter: [11C]ALX-5407. J Label Compd Radiopharm 44:241–246

    CAS  Google Scholar 

  179. Murthy NV, Passchier J, Gunn RN et al (2008) [11C]GSK931145: A new PET ligand for glycine transporter 1. Neuroimage 41(Suppl 2):T21

    Google Scholar 

  180. Passchier J, Gentile G, Porter R et al (2010) Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography. Synapse 64:542–549

    CAS  Google Scholar 

  181. Guo Q, Brady M, Gunn RN (2009) A biomathematical modeling approach to central nervous system radioligand discovery and development. J Nucl Med 50:1715–1723

    CAS  Google Scholar 

  182. Bullich S, Slifstein M, Passchier J et al (2011) Biodistribution and radiation dosimetry of the glycine transporter-1 ligand [11C]-GSK931145 determined from primate and human whole-body PET. Mol Imaging Biol 13:776–784

    Google Scholar 

  183. Passchier J, Murthy V, Catafau AM et al (2008) Development and evaluation of [11C]GSK931145, a new PET ligand for imaging type 1 glycine transporters (GlyT1) in the living human brain. J Nucl Med 49:129P

    Google Scholar 

  184. Gunn RN, Murthy V, Catafau AM et al (2011) Translational characterization of [11C]GSK931145, a PET ligand for the glycine transporter type 1. Synapse 65:1319–1332

    CAS  Google Scholar 

  185. Hamill TG, Eng W, Jennings A et al (2011) The synthesis and preclinical evaluation in rhesus monkey of [18F]MK-6577 and [11C]CMPyPB glycine transporter 1 positron emission tomography radiotracers. Synapse 65:261–270

    CAS  Google Scholar 

  186. Sanabria-Bohórquez SM, Joshi AD, Holahan M et al (2012) Quantification of the glycine transporter 1 in rhesus monkey brain using [18F]MK-6577 and a model-based input function. Neuroimage 59:2589–2599

    Google Scholar 

  187. Sanabria-Bohorquez S, Van Laere K, Hamill T et al (2009) Evaluation of the novel glycine transporter 1 (GlyT1) tracer [18F]CFpyPB: dosimetry and brain quantification in human. J Nucl Med 50:S1211

    Google Scholar 

  188. Zheng M-Q, Holden D, Hamill T et al (2013) Comparative study of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK6577 in baboons. J Nucl Med 54(Suppl 2):414

    Google Scholar 

  189. Borroni E, Zhou Y, Ostrowitzki S et al (2013) Pre-clinical characterization of [11C]R05013853 as a novel radiotracer for imaging of the glycine transporter type 1 by positron emission tomography. Neuroimage 75:291–300

    CAS  Google Scholar 

  190. Wong DF, Ostrowitzki S, Zhou Y et al (2013) Characterization of [11C]RO5013853, a novel PET tracer for the glycine transporter type 1 (GlyT1) in humans. Neuroimage 75:282–290

    CAS  Google Scholar 

  191. Wong D, Borroni E, Ostrowitzki S et al (2012) Imaging biomarkers for the glycine transporter type 1. J Nucl Med 53(Suppl 1):199

    Google Scholar 

  192. Pinard E, Burner S, Cueni P et al (2011) Radiosynthesis of [5-[11C]methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methyl-ethoxy)-phenyl]-[5-(tetrahydro-pyran-4-yl)-1,3-dihydro-isoindol-2-yl]-methanone ([11C]RO5013853), a novel PET tracer for the glycine transporter type I (GlyT1). J Label Compd Radiopharm 54:702–705

    CAS  Google Scholar 

  193. Alberati D, Borroni E, Moreau J et al (2011) Partial occupancy of the glycine transporter type 1 in rat by RG1678 leads to efficacy in models relevant to schizophrenia. Schizophr Bull 37(Suppl 1):286

    Google Scholar 

  194. Borroni E, Wong DF, Alberati D et al (2011) Partial occupancy of the glycine transporter type 1 in monkey by RG1678 leads to efficacy in a model of prefrontal cortical function. Schizophr Bull 37(Supplement 1):296–297

    Google Scholar 

  195. Hofmann C, Alberati D, Banken L et al (2011) Glycine transporter type 1 (GlyT1) inhibitor RG1678: proof of mechanism of action in healthy volunteers. Schizophr Bull 37(Suppl 1):306

    Google Scholar 

  196. Hayes E (2014) The Pink Sheet Jan 21, 2014. http://www.elsevierbi.com/publications/the-pink- sheet-daily/2014/1/21/bitopertins-schizophrenia-failure-stirs-doubt-about-roches-cns-plans. Accessed 25 Jan 2014

  197. Liem-Moolenaar M, Peeters P, Kamerling M et al (2013) Early stage development of the glycine-1 re-uptake inhibitor SCH 900435: central nervous system effects compared with placebo in healthy men. Br J Clin Pharmacol 75:1455–1467

    CAS  Google Scholar 

  198. D’Souza DC, Singh N, Elander J et al (2012) Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacol 37:1036–1046

    Google Scholar 

  199. Nations KR, Smits JA, Tolin DF et al (2012) Evaluation of the glycine transporter inhibitor Org 25935 as augmentation to cognitive-behavioral therapy for panic disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 73:647–653

    CAS  Google Scholar 

  200. Ouellet D, Sutherland S, Wang T et al (2011) First-time-in-human study with GSK1018921, a selective GlyT-1 inhibitor: relationship between exposure and dizziness. Clin Pharmacol Ther 90:597–604

    CAS  Google Scholar 

  201. Tsai G, Ralph-Williams RJ, Martina M et al (2004) Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci U S A 101:8485–8490

    CAS  Google Scholar 

  202. Liu C-N, Pettersen B, Seitis G et al (2013) GlyT1 inhibitor reduces oscillatory potentials of the electroretinogram in rats. Cutan Ocul Toxicol. doi:10.3109/15569527.2013.833937. Posted online on October 22, 2013

  203. Shen W, Jiang Z (2007) Characterization of glycinergic synapses in vertebrate retinas. J Biomed Sci 14:5–13

    CAS  Google Scholar 

  204. Treanor J, Chen H, Murphy O et al (2013) AMG 747, a novel glycine transporter type-1 (GlyT1) inhibitor with cognition-enhancing and antipsychotic-like effects in preclinical rodent models of schizophrenia Poster 152.08/W9. Society for Neurosciences San Diego Nov 9th–13th 2013, Neuroscience 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick A. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porter, R.A., Dawson, L.A. (2014). GlyT-1 Inhibitors: From Hits to Clinical Candidates. In: Celanire, S., Poli, S. (eds) Small Molecule Therapeutics for Schizophrenia. Topics in Medicinal Chemistry, vol 13. Springer, Cham. https://doi.org/10.1007/7355_2014_53

Download citation

Publish with us

Policies and ethics

Navigation