Abstract

Eutectic MgF2-CaF2 based salt containing YF3, CaO and Al2O3 additions were used in this study. The electrical conductivity was measured as a function of temperature by a calibration-free coaxial electrode setup. The materials selection and setup design were optimized to accurately measure the electrical conductivity of the highly conductive molten salts (>1 S/cm). The solubility and diffusion behavior of alumina and zirconia in the molten salts were investigated by drawing and holding the molten salt for different lengths of time within capillary tubes made of alumina and zirconia, respectively. After the time-dependent high temperature holds, the samples were cooled and the solubility of the solute within the molten salt was determined using scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis and wavelength-dispersive X-ray spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Locatelli, M. Mancini, and N. Todeschini,“Generation IV nuclear reactors: Current status and future prospects,” Energy Policy, vol. 61, pp. 1503–1520,2013.

    Article  Google Scholar 

  2. H. Zhu,“Rare Earth Metal Production by Molten Salt Electrolysis,” in Encyclopedia of Applied Electrochemistry, G. Kreysa, K. Ota, and R. F. Savinell, Eds. New York, NY: Springer New York, 2014, pp. 1765–1772.

    Chapter  Google Scholar 

  3. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma,“Silicon Electrodeposition in Water-Soluble KF-KC1 Molten Salt: Investigations on the Reduction of Si(IV) Ions,” J. Electrochem. Soc, vol. 162, no. 9, pp. D444-D448, Jun. 2015.

    Article  Google Scholar 

  4. R. Lumley, Ed., Fundamentals of Aluminium Metallurgy. Woodhead Publishing Limited, 2011.

    Google Scholar 

  5. U. B. Pal, D. E. Woolley, and G. B. Kenney,“Emerging SOM technology for the green synthesis of metals from oxides,” JOM, vol. 53, no. 10, pp. 32–35, Oct. 2001.

    Article  Google Scholar 

  6. A. Krishnan, U. B. Pal, and X. G. Lu,“Solid oxide membrane process for magnesium production directly from magnesium oxide,” Metall. Mater. Trans. B, vol. 36, no. 4, pp. 463–173, Aug. 2005.

    Article  Google Scholar 

  7. X. Guan, U. B. Pal, S. Gopalan, and a. C. Powell,“LSM (La0.8Sr0.2MnO3- )-Inconel Inert Anode Current Collector for Solid Oxide Membrane (SOM) Electrolysis,” J. Electrochem. Soc, vol. 160, no. 11, pp. F1179-F1186, Sep. 2013.

    Article  Google Scholar 

  8. E. S. Gratz, X. Guan, J. D. Milshtein, U. B. Pal, and A. C. Powell,“Mitigating Electronic Current in Molten Flux for the Magnesium SOM Process,”Metall. Mater. Trans. B, vol. 45, no. 4, pp. 1325–1336, Aug. 2014.

    Article  Google Scholar 

  9. X. Guan, U. B. Pal, and A. C. Powell,“Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling,” Metall. Mater. Trans. E, vol. 1, no. 2, pp. 132–144, Jun. 2014.

    Google Scholar 

  10. M. Suput, R. Delucas, S. Pati, G. Ye, U. Pal, and A. C. Powell IV,“Solid oxide membrane technology for environmentally sound production of titanium,” Miner. Process. Extr. Metall, vol. 117, no. 2, pp. 118–122, Jun. 2008.

    Article  Google Scholar 

  11. A. Krishnan, X. G. Lu, and U. B. Pal,“Solid Oxide Membrane (SOM) technology for environmentally sound production of tantalum metal and alloys from their oxide sources,” Scand. J. Metall., vol. 34, no. 5, pp. 293–301, 2005.

    Article  Google Scholar 

  12. Y. Jiang, J. Xu, X. Guan, U. B. Pal, and S. N. Basu,“Production of Silicon by Solid Oxide Membrane-Based Electrolysis Process,” MRS Proc, vol. 1493, pp. MRSF12–1493-E19–89, Jan. 2013.

    Article  Google Scholar 

  13. X. Guan, S. Su, U. B. Pal, and A. C. Powell,“Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency,” Metall. Mater. Trans. B, vol. 45, no. 6, pp. 2138–2144, Dec. 2014.

    Article  Google Scholar 

  14. U. B. Pal and A. C. Powell,“The use of solid-oxide-membrane technology for electrometallurgy,” JOM, vol. 59, no. 5, pp. 44–19, May 2007.

    Article  Google Scholar 

  15. C. J. Macdonald,“Calibration-Free Electrical Conductivity Measurements For Highly Conductive Slags,” Boston University, 2000.

    Google Scholar 

  16. S. L. Schiefelbein, N. A. Fried, K. G. Rhoads, and D. R. Sadoway,“A high-accuracy, calibration-free technique for measuring the electrical conductivity of liquids,” Rev. Sci. Instrum., vol. 69, no. 9, p. 3308, 1998.

    Article  Google Scholar 

  17. S. L. Schiefelbein and D. R. Sadoway,“A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides,” Metall. Mater. Trans. B, vol. 28, no. 6, pp. 1141–1149, Dec. 1997.

    Article  Google Scholar 

  18. U. B. Pal,“Determining physio-chemical properties of slags by electrical measurements,” JOM, vol. 54, no. 11, pp. 57–61, Nov. 2002.

    Article  Google Scholar 

  19. K. R. Cooper and M. Smith,“Electrical test methods for on-line fuel cell ohmic resistance measurement,” J. Power Sources, vol. 160, no. 2, pp. 1088–1095, 2006.

    Article  Google Scholar 

  20. S. C. Britten and U. B. Pal,“Solid-state amperometric sensor for the In-situ monitoring of slag composition and transport properties,” Metall. Mater. Trans. B, vol. 31, no. 4, pp. 733–753, 2000.

    Article  Google Scholar 

  21. E. S. Gratz, J. D. Milshtein, and U. B. Pal,“Determining Yttria-Stabilized Zirconia (YSZ) Stability in Molten Oxy-Fluoride Flux for the Production of Magnesium with the SOM Process,” J. Am. Ceram. Soc, vol. 96, no. 32300, pp. 3279–3285, Jun. 2013.

    Google Scholar 

  22. J. Xu, B. Lo, Y. Jiang, U. Pal, and S. Basu,“Stability of yttria stabilized zirconia in molten oxy-fluorite flux for the production of silicon with the solid oxide membrane process,” J. Eur. Ceram. Soc, vol. 34, no. 15, pp. 3887–3896, Dec. 2014.

    Article  Google Scholar 

  23. J. D. Edwards, C. S. Taylor, L. A. Cosgrove, and A. S. Russell,“Electrical Conductivity and Density of Molten Cryolite with Additives,” J. Electrochem. Soc, vol. 100, no. 11, p. 508, 1953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Su, S., Villalon, T., Pal, U., Powell, A. (2016). Techniques for Measuring Solubility and Electrical Conductivity in Molten Salts. In: Reddy, R.G., Chaubal, P., Pistorius, P.C., Pal, U. (eds) Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48769-4_49

Download citation

Publish with us

Policies and ethics

Navigation