Log in

Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Solid oxide membrane (SOM) electrolysis has been used for magnesium production directly from magnesium oxide. Magnesium dissolution in molten flux electrolyte is of particular concern in SOM electrolysis, because it imparts electronic conductivity to the flux and thereby decreases the faradaic current efficiency. In this work, a new approach for removing soluble magnesium in the flux is explored. Periodic shorting is performed between the anode and the cathode of SOM electrolysis cell. During shorting, soluble magnesium in the flux is oxidized to magnesium oxide. This significantly reduces the electronic current in the flux and therefore keeps the faradaic current efficiency high during SOM electrolysis. Electronic transference numbers in the flux are measured to assess the soluble magnesium concentration. Potentiodynamic scan results also confirm the feasibility of shorting the electrodes to remove soluble magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U.B. Pal, D.E. Woolley, and G.B. Kenney: JOM, 2001, vol. 53(10), p. 32.

  2. A. Krishnan, U.B. Pal, and X.G. Lu: Metall. Mater. Trans. B, 2005, vol. 36B, p. 463.

    Article  Google Scholar 

  3. U.B. Pal and A.C. Powell: JOM, 2007, vol. 59(5), p. 44.

  4. X. Guan, P.A. Zink, U.B. Pal, and A.C. Powell: Metall. Mater. Trans. B, 2013, vol. 44B, p. 261.

    Article  Google Scholar 

  5. X. Guan, U.B. Pal, and A.C. Powell, JOM, 2013, vol. 65(10), p. 1285.

  6. X. Guan, U.B. Pal, S. Gopalan, and A.C. Powell: J. Electrochem. Soc., 2013, vol. 160(11), p. F1179.

  7. E. S. Gratz, X. Guan, J. D. Milshtein, U. B. Pal, and A. C. Powell, Metall. Mater. Trans. B, DOI: 10.1007/s11663-014-0060-9 (2014).

    Google Scholar 

  8. X. Guan, U. B. Pal, and A. C. Powell, Metall. Mater. Trans. E, 2014, vol. 1 (2), pp. 132-144.

    Google Scholar 

  9. A.S. Dworkin and M.A. Bredig: J. Phys. Chem., 1971, vol. 75 (15), pp. 2340–44.

    Article  Google Scholar 

  10. E. Gratz, S. Pati, J. Milshtein, A. Powell, and U. Pal: in Magnesium Technology 2011, W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, eds., Wiley-TMS, Warrendale, PA, 2011, pp. 39–42.

  11. E. Gratz, S. Pati, J. Milshtein, A. Powell, and U. Pal, in Electrometallurgy 2012 (TMS), M.L. Free, M. Moats, G. Houlachi, E. Asselin, A. Allanore, J. Yurko, and S. Wang, eds., John Wiley & Sons, New Jersey, 2012, pp. 111–18.

  12. E. Gratz: Ph.D. Dissertation, Boston University, 2013.

  13. S. Yuan, U. Pal, and K.C. Chou: J. Electrochemical. Soc., 1994, vol. 141 (2), pp. 467–74.

    Article  Google Scholar 

  14. Z. Hasham, U. Pal, K.C. Chou, and W.L. Worrell: J. Electrochemical. Soc., 1995, vol. 142 (2), pp. 469–75.

    Article  Google Scholar 

  15. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 75–82.

    Article  Google Scholar 

  16. A.V. Virkar: J. Power Sources, 2005, vol. 147, pp. 8–31.

    Article  Google Scholar 

  17. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32 (6), pp. 1385–96.

    Article  Google Scholar 

  18. S.C. Britten and U.B. Pal: Metall. Mater. Trans. B, 2000, vol. 31, pp. 733–53.

    Article  Google Scholar 

  19. K.R. Copper and M. Smith: J. Power Sources, 2006, vol. 160, pp. 1088–95.

    Article  Google Scholar 

  20. A. Roine: HSC Chemistry, 5.11, Outokumpu, Pori, 2002.

  21. J.K. Baird, T.R. King, and C. Stein: J. Phys. Chem. Solids, 1999, vol. 60, pp. 891–94.

    Article  Google Scholar 

  22. N.J. Maskalick: Proceedings of the First International Symposium on Solid Oxide Fuel Cells, vol. 89–11, S.C. Singhal, ed., The Electrochemical Society Proceedings Series, Pennington, NJ, 1989, pp. 279–87.

  23. N. Sano, S. Honma, and Y. Matsushita: Metall. Trans., 1970, vol. 1, pp. 301–03.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the Department of Energy under Award No. DE-EE0005547. The authors thank Mr. Robert Sjostrom and Mr. Alexander Kithes for assistance with machining experimental setups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Pal.

Additional information

Manuscript submitted May 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Su, S., Pal, U.B. et al. Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency. Metall Mater Trans B 45, 2138–2144 (2014). https://doi.org/10.1007/s11663-014-0142-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0142-8

Keywords

Navigation