• 192 Accesses

Abstract

The manufacturing industry is responsible for a large share of global environmental impacts (e.g., greenhouse gas emissions) that can mainly be tracked back to energy demand. This energy demand is determined by a diversity of processes and machines, which dynamically interact in process chains and with other factory elements such as technical building services (TBS). Given that, system-oriented material flow simulation with inclusion of energy aspects bears the potential to support the energy transition of industry through fostering both energy efficiency and substitution towards renewable resources. The chapter addresses the necessary background as well as common aspects in the context of energy-oriented manufacturing system simulation. Four manufacturing case studies underline the feasibility and potential of available simulation approaches for improving energy-related environmental impacts and also costs. Additionally, an outlook towards potential future research steps is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Dehning P, Blume S, Dér A, Flick D, Herrmann C, Thiede S (2019) Load profile analysis for reducing energy demands of production systems in non-production times. Appl Energy 237:117–130

    Article  Google Scholar 

  • Dér A, Kaluza A, Reimer L, Herrmann C, Thiede S (2022) Integration of energy oriented manufacturing simulation into the life cycle evaluation of lightweight body parts. Int J Precis Eng Manuf-Green Technol 9:899–918

    Article  Google Scholar 

  • Ellingsen LAW, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18(1):113–124

    Article  Google Scholar 

  • Gebler M, Cerdas JF, Thiede S, Herrmann C (2020) Life cycle assessment of an automotive factory: identifying challenges for the decarbonization of automotive production—A case study. J Clean Prod 270:122330

    Article  Google Scholar 

  • Graßl MA (2014) Bewertung der Energieflexibilität in der Produktion. Ph.D. thesis, TU München, Werkzeugmaschinen und Betriebswissenschaften, München

    Google Scholar 

  • Herrmann C, Thiede S, Kara S, Hesselbach J (2011) Energy oriented simulation of manufacturing systems—concept and application. CIRP Ann 60(1):45–48

    Article  Google Scholar 

  • Herrmann C, Posselt G, Thiede S (2013) Energie- und hilfsstoffoptimierte Produktion. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • IPCC (2014) Climate Change 2014: mitigation of climate change. Contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Klocke F, König W (2006) Fertigungsverfahren: Umformen. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Kwade A, Haselrieder W, Leithoff R, Modlinger A, Dietrich F, Droeder K (2018) Current status and challenges for automotive battery production technologies. Nat Energy 3(4):290–300

    Article  Google Scholar 

  • Labbus I (2021) Cyber-physische Produktionssysteme für die energieeffiziente Komponentenproduktion. Springer Fachmedien, Wiesbaden

    Book  Google Scholar 

  • Labbus I, Schmidt C, Dér A, Herrmann C, Thiede S (2018) Automated production data integration for energy-oriented process chain design. Procedia CIRP 72:551–556

    Article  Google Scholar 

  • Sauer A, Abele E, Buhl HU (2019) Energieflexibilität in der deutschen Industrie: Ergebnisse aus dem Kopernikus-Projekt – Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung (SynErgie). Fraunhofer Verlag, Stuttgart

    Google Scholar 

  • Schmidt C (2021) Planning of eco-efficient process chains for automotive component manufacturing. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Schmidt C, Labbus I, Herrmann C, Thiede S (2017) Framework of a modular tool box for the design of process chains in automotive component manufacturing. Procedia CIRP 63:739–744

    Article  Google Scholar 

  • Schönemann M (2017) Multiscale simulation approach for battery production systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Schönemann M, Bockholt H, Thiede S, Kwade A, Herrmann C (2019) Multiscale simulation approach for production systems. Int J Adv Manuf Technol 102(5):1373–1390

    Article  Google Scholar 

  • Sihn W, Sobottka T, Heinzl B, Kamhuber F (2018) Interdisciplinary multi-criteria optimization using hybrid simulation to pursue energy efficiency through production planning. CIRP Ann 67(1):447–450

    Article  Google Scholar 

  • Sobottka T, Kamhuber F, Rössler M, Sihn W (2018) Hybrid simulation-based optimization of discrete parts manufacturing to increase energy efficiency and productivity. Procedia Manuf 21:413–420

    Article  Google Scholar 

  • Sobottka T, Kamhuber F, Heinzl B (2020) Simulation-based multi-criteria optimization of parallel heat treatment furnaces at a casting manufacturer. J Manuf Mater Process 4(3):94. https://doi.org/10.3390/jmmp4030094

  • Stoldt J, Schlegel A, Franz E, Langer T, Putz M (2013) Generic energy-enhancement module for consumption analysis of manufacturing processes in discrete event simulation. In: Nee A, Song B, Ong SK (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, pp 165–170

    Chapter  Google Scholar 

  • Stoldt J, Prell B, Rabe M, Wenzel S, Thiede S (2021) A criteria-based database for research and applications of energy-oriented simulation in production and logistics. In: Schuderer P, Franke J (eds) Simulation in Produktion und Logistik Cuvillier, Göttingen Germany, pp 93–102

    Google Scholar 

  • Stoldt J, Prell B, Schlegel A, Putz M (2017) Modellierung von volatilen erneuerbaren Energieerzeugern und Energiespeichern in Siemens Plant Simulation. In Wenzel S, Peter T (eds) Simulation in Produktion und Logistik 2017. Kassel University Press, Kassel

    Google Scholar 

  • Thiede S (2012) Energy efficiency in manufacturing systems. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Thiede S (2021) Digital technologies, methods and tools towards sustainable manufacturing: does Industry 4.0 support to reach environmental targets? Procedia CIRP 98:1–6

    Article  Google Scholar 

  • Thiede S, Seow Y, Andersson J, Johansson B (2013) Environmental aspects in manufacturing system modelling and simulation—state of the art and research perspectives. CIRP J Manuf Sci Technol 6(1):78–87

    Article  Google Scholar 

  • Thiede S, Turetskyy A, Kwade A, Kara S, Herrmann C (2019) Data mining in battery production chains towards multi-criterial quality prediction. CIRP Ann 68(1):463–466

    Article  Google Scholar 

  • Thomitzek M, von Drachenfels N, Cerdas F, Herrmann C, Thiede S (2019) Simulation-based assessment of the energy demand in battery cell manufacturing. Procedia CIRP 80:126–131

    Article  Google Scholar 

  • Verein Deutscher Ingenieure (2014) VDI Guideline 3633 Simulation of systems in materials handling, logistics and production—Part 1. Fundamentals. Beuth, Berlin

    Google Scholar 

  • Walther J, Weigold M (2021) A systematic review on predicting and forecasting the electrical energy consumption in the manufacturing industry. Energies 14(4):968. https://doi.org/10.3390/en14040968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Thiede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiede, S., Dér, A., Münnich, M., Sobottka, T. (2024). Manufacturing. In: Wenzel, S., Rabe, M., Strassburger, S., von Viebahn, C. (eds) Energy-Related Material Flow Simulation in Production and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-34218-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34218-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34217-2

  • Online ISBN: 978-3-031-34218-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation