Nanoscale Plasmonic Printing

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

Abstract

Nanoscale structuring/printing is of interest for a range of applications in 3D subtractive and additive manufacturing (3D±). Basic principles of light field enhancement and control at the nanoscale are overviewed in this chapter for bulk, surface, and localised plasmons (1D, 2D, and 3D localisation, respectively). All these plasmons are resonant phenomena that have common Lorentzian spectral line shape that relates refractive and absorption properties as well as defining the phase of transmitted and scattered light. Localisation of light at the nanoscale creates the possibility of modification with matching resolution. Harnessing this light enhancement can be demonstrated as a “nano-pen” for direct write nanolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, M.B. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Article  ADS  Google Scholar 

  2. E.G. Gamaly, A.V. Rode, Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Appl. Phys. A 124, 278 (2018)

    Article  ADS  Google Scholar 

  3. E.G. Gamaly, A.V. Rode, Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse. J. Opt. Soc. Am. B 31, C36 (2014)

    Article  Google Scholar 

  4. R. Parker, Introduction to Plasma Physics I (MIT OpenCourseWare, MIT, Lecture notes, 2006)

    Google Scholar 

  5. B. Farid, R.W. Godby, Cohesive energies of crystals. Phys. Rev. B 43, 14248–14250 (1991)

    Article  ADS  Google Scholar 

  6. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949 (1991).

    Article  ADS  Google Scholar 

  7. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  8. E.E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V. Tikhonchuk, Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation. Phys. Rev. B 73, 214101 (2006)

    Article  ADS  Google Scholar 

  9. A.G. Marshall, Dispersion vs. absorption (DISPA): A magic circle for spectroscopic line shape analysis. Chemom. Intell. Lab. Syst. 3, 261–275 (1988).

    Google Scholar 

  10. L. Wang, Q.-D. Chen, X.-W. Cao, R. Buividas, X. Wang, S. Juodkazis, H.-B. Sun, Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Sci. Appl. 6, e17112 (2017)

    Article  Google Scholar 

  11. K. Miyazaki, G. Miyaji, Nanograting formation through surface plasmon fields induced by femtosecond laser pulses. J. Appl. Phys. 114, 153108 (2013).

    Article  ADS  Google Scholar 

  12. S.A. Maier, Plasmonics: Fundamentals and Applications. (Springer, Berlin, 2007)

    Google Scholar 

  13. J. Maksimovic, S. Ng, T. Katkus, B. Cowie, S. Juodkazis, External field-controlled ablation: Magnetic field. Nanomaterials 9, 1662 (2019)

    Article  Google Scholar 

  14. S.S. Mao, F. Qu(́e)r(́e), S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 79, 1695–1709 (2004)

    Google Scholar 

  15. L. Grechko, V. Sugakov, O. Tomasevich, A. Fedorchenko, Sbornik zadach po teoreticheskoj fizike (Vysshajashkola, Moskva (in Russian), 1972)

    Google Scholar 

  16. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback. Nanotechnology 22, 055304 (2011)

    Article  ADS  Google Scholar 

  17. R. Buividas, M. Mikutis, S. Juodkazis, External field-controlled ablation: Magnetic field. Prog. Quantum Electron. 38, 119–156 (2014)

    Article  ADS  Google Scholar 

  18. V.N. Rai, A.K. Srivastava, C. Mukherjee, S.K. Deb, Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films. Appl. Optics 51, 2606–2015 (2012)

    Article  ADS  Google Scholar 

  19. Z.-Z. Li, L. Wang, H. Fan, Y.-H. Yu, Q.-D. Chen, S. Juodkazis, H.-B. Sun, O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 9, 41 (2020)

    Article  ADS  Google Scholar 

  20. R. Buividas, S. Rekštytė, M. Malinauskas, S. Juodkazis, Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses. Opt. Mat. Express 3, 1674–1686 (2013)

    Article  ADS  Google Scholar 

  21. G. Seniutinas, A. Balčytis, I. Rėklaitis, F. Chen, J. Davis, C. David, S. Juodkazis, Tip** solutions: emerging 3D nano-fabrication/-imaging technologies. Nanophotonics 6, 923–941 (2017)

    Article  Google Scholar 

  22. M.P. Echlin, M. Straw, S. Randolph, J. Filevich, T.M. Pollock, The TriBeam system: Femtosecond laser ablation in situ SEM. Mater. Charact. 100, 1–12 (2015)

    Article  Google Scholar 

  23. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, M. Obara, Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces. Appl. Phys. Express 6, 112701 (2013)

    Article  ADS  Google Scholar 

  24. E. Skliutas, M. Lebedevaite, E. Kabouraki, T. Baldacchini, J. Ostrauskaite, M. Vamvakaki, M. Farsari, S. Juodkazis, M. Malinauskas, Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10, 1211–1242 (2021)

    Article  Google Scholar 

  25. E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K.G. Nakamura, K.-I. Kondo, S.-Y. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, H. Misawa, Glass cutting by femtosecond pulsed irradiation. J. Microlith. Microfab. Microsyst. 3, 358–363 (2004)

    Google Scholar 

  26. C. Kerse, H. Kalaycıoǧlu, P. Elahi, B. Çetin, D. Kesim, O. Akçaalan, S. Yavaş, M. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ilday, Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016)

    Google Scholar 

  27. D. Förster, B. Jäggi, A. Michalowski, B. Neuenschwander, Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 14, 3331 (2021)

    Article  ADS  Google Scholar 

  28. N. Hodgson, A. Steinkopff, S. Heming, H. Allegre, H. Haloui, T. Lee, M. Laha, J. VanNunen, Ultrafast laser machining: process optimization and applications, in SPIE Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, vol. 11673 (SPIE, Bellingham, Washington, USA, 2021) pp. 11673–08

    Google Scholar 

  29. Y.-K. Sun, L. Wang, M. Kamano, S. Juodkazis, Plasmonic nano-imprinting by photo-do**. Opt. Lett. 43, 3786–3789 (2018)

    Article  ADS  Google Scholar 

  30. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, H. Misawa, Nanoparticle plasmon-assisted two-photon photopolymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928–6929 (2008)

    Article  Google Scholar 

  31. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, H. Misawa, Nano-particle-enhanced photo-polymerization. J. Phys. Chem. C 113, 11720–11724 (2009)

    Article  Google Scholar 

  32. A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization. Optics Express 21, 6901–6909 (2013)

    Article  ADS  Google Scholar 

  33. E. Mottay, Femtosecond lasers for high throughput surface engineering, in SPIE Photonics West Industry, vol. 11768 (SPIE, Bellingham, 2021), pp. 11768–11707

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ARC Discovery DP190103284 and Linkage LP190100505 projects. SJ is grateful to Workshop of Photonics for the technology transfer project and fs-laser industrial 3D printing setup based on PHAROS laser.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, S.H., Juodkazis, S. (2023). Nanoscale Plasmonic Printing. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_12

Download citation

Publish with us

Policies and ethics

Navigation