Log in

Single-step printing of metallic nanoparticles in 2D micropatterns

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work demonstrates a single-step method for synthesis and printing of metallic nanoparticles (NPs) in 2D micropatterns. The method is based on femtosecond laser writing, enabling fast and high precision deposition of silver, gold, or copper NPs in space-selective areas, which in general is not achieved by the traditional chemical routes or laser ablation of metal. Such finds were accomplished by employing laser-induced forward transfer in the femtosecond pulse regime (fs-LIFT). The results are promising for application, since metallic NPs, with a lognormal diameter distribution averaging between ~ 4 and 30 nm, allow exploring plasmon bands throughout the visible spectrum. The mechanisms behind NP formation by fs-LIFT are discussed based on the thermomechanical response of the material. An estimative based on the heat transfer suggests the occurrence of mechanical fragmentation rather than material vaporization. The main result addressed herein, however, is the ability to deposit silver, gold, and copper nanoparticles in selected regions, supporting the development of NP-based devices via one-step processing and their application in sensors and photonic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert O, Roger S, Glinec Y, Loulergue JC, Etchepare J, Boulmer-Leborgne C, Perrière J, Millon E (2003) Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl Phys A Mater Sci Process 76:319–323

    Article  CAS  Google Scholar 

  • Almeida JMP, Paula KT, Arnold CB, Mendonça CR (2018) Sub-wavelength self-organization of chalcogenide glass by direct laser writing. Opt Mater 84:259–262

    Article  CAS  Google Scholar 

  • Almeida JMP, Avila OI, Andrade MB, Stefanelo JC, Otuka AJG, Paula KT, Balogh DT, Mendonça CR (2019) Micropatterning of poly(p-phenylene vinylene) by femtosecond laser induced forward transfer. Polym Int 68:160–163

    Article  CAS  Google Scholar 

  • Arnold CB, Serra P, Piqué A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–31

    Article  CAS  Google Scholar 

  • Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G (2007) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113

    Article  Google Scholar 

  • Barcikowski S, Devesa F, Moldenhauer K (2009) Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J Nanopart Res 11:1883–1893

    Article  Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  • Bensebaa F (2013) Nanoparticle fundamentals. In Bensebaa F (Ed) Nanoparticle Technologies: From Lab to Market. 1st edn. Elsevier Ltda, Amsterdam, pp 1–84

  • Bera S, Sabbah AJ, Yarbrough JM, Allen CG, Winters B, Durfee CG, Squier JA (2007) Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films. Appl Opt 46:4650–4659

    Article  CAS  Google Scholar 

  • Bohandy J, Kim BF, Adrian FJ (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538–1539

    Article  CAS  Google Scholar 

  • Bosbach J, Martin D, Stietz F, Wenzel T, Träger F (1999) Laser-based method for fabricating monodisperse metallic nanoparticles. Appl Phys Lett 74:2605–2607

    Article  CAS  Google Scholar 

  • Boutopoulos C, Kalpyris I, Serpetzoglou E, Zergioti I (2014) Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid Nanofluid 16:493–500

    Article  CAS  Google Scholar 

  • Brisbane AD (1971) Pattern deposit by laser. US Patent

  • DellʼAglio M, Gaudiuso R, De Pascale O, De Giacomo A (2015) Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl Surf Sci 348:4–9

    Article  Google Scholar 

  • Ellner M, Kolatschek K, Predel B (1991) On the partial atomic volume and the partial molar enthalpy of aluminium in some phases with Cu and Cu3Au structures. J Less Common Metals 170:171–184

    Article  CAS  Google Scholar 

  • Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231

    Article  CAS  Google Scholar 

  • Faraday M (1857) X. The Bakerian Lecture. —experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Google Scholar 

  • Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 45:389501

    Article  Google Scholar 

  • Gattass RR, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2:219–225

    Article  CAS  Google Scholar 

  • Haslbeck S, Martinek KP, Stievano L, Wagner FE (2006) Formation of gold nanoparticles in gold ruby glass: The influence of tin. In: Lippens PE, Jumas JC, Génin JMR (eds) ICAME 2005. Springer, Berlin, Heidelberg, pp 89–94

  • Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface dam**. Phys Rev B Condens Matter 48:18178–18188

    Article  Google Scholar 

  • Ingham B, Lim TH, Dotzler CJ, Henning A, Toney MF, Tilley RD (2011) How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater 23:3312–3317

    Article  CAS  Google Scholar 

  • Jana J, Ganguly M, Pal T (2016) Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv 6:86174–86211

    Article  CAS  Google Scholar 

  • José-Yacaman M, Gutierrez-Wing C, Miki M et al (2005) Surface diffusion and coalescence of mobile metal nanoparticles. J Phys Chem B 109:9703–9711

    Article  Google Scholar 

  • Jung JH, Oh HC, Noh HS et al (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670

    Article  CAS  Google Scholar 

  • Kirkwood SE, Tsui YY, Fedosejevs R, Brantov AV, Bychenkov VY (2009) Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets. Physical Review B 79:144120 1–44120 7

  • Kiss LB, Söderlund J, Niklasson GA, Granqvist CG (1999) The real origin of lognormal size distributions of nanoparticles in vapor growth processes. Nanostruct Mater 12:327–332

    Article  Google Scholar 

  • Lin Z, Yue J, Liang L, Tang B, Liu B, Ren L, Li Y, Jiang L (2020) Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water. Appl Surf Sci 504:144461

    Article  CAS  Google Scholar 

  • Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33:1706–1716

    Article  CAS  Google Scholar 

  • Luo J, Pohl R, Qi L et al (2017) Printing functional 3D microdevices by laser-induced forward transfer. Small 13. https://doi.org/10.1002/smll.201602553

  • Mikšys J, Arutinov G, Römer GRBE (2019) Pico- to nanosecond pulsed laser-induced forward transfer (LIFT) of silver nanoparticle inks: a comparative study. Appl Phys A 125:814 2–11

  • Peiris S, McMurtrie J, Zhu H-Y (2016) Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catal Sci Technol 6:320–338

    Article  CAS  Google Scholar 

  • Perrière J, Boulmer-Leborgne C, Benzerga R, Tricot S (2007) Nanoparticle formation by femtosecond laser ablation. J Phys D Appl Phys 40:7069–7076

    Article  Google Scholar 

  • Piqué A, Serra P (2018) Laser printing of functional materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Pohl R (2015) Imaging of the ejection process of nanosecond laser-induced forward transfer of gold. J Laser Micro/Nanoeng 10:154–157

    Article  CAS  Google Scholar 

  • Qi-lin X, Li Z, **ao-geng T (2015) Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study. Proc Royal Soc A 471:20150614

    Article  Google Scholar 

  • Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals—I. Analysis. Int J Heat Mass Transf 37:2789–2797

    Article  CAS  Google Scholar 

  • Ren Y, Qin K, Chen Y, Lin Q, Xu D, **n Z, Ni J, Ge L (2019) Thermomechanical response of copper films irradiated by femtosecond-pulsed lasers with dynamic optical properties. Appl Opt 58:871–878

    Article  CAS  Google Scholar 

  • Ross RB (1992) Silver Ag. Metallic materials specification handbook 286–292

  • Sadrolhosseini AR, Bin AS, Shameli K et al (2013) Laser ablation synthesis and optical properties of copper nanoparticles. J Mater Res 28:2629–2636

    Article  CAS  Google Scholar 

  • Sametoglu V, Sauer VTK, Tsui YY (2013) Production of 70-nm Cr dots by laser-induced forward transfer. Opt Express 21:18525–18531

    Article  Google Scholar 

  • Scaiano JC, Stamplecoskiew KG, Hallett-Tapley GL (2012) Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Commun 48:4798–4808

    Article  CAS  Google Scholar 

  • Struleva EV, Komarov PS, Ashitkov SI (2019) Comparison of femtosecond laser ablation of gold and nickel. High Temp 57:659–662

    Article  CAS  Google Scholar 

  • Ullmann M, Friedlander SK, Schmidt-Ott A (2002) J Nanopart Res 4:499–509

    Article  CAS  Google Scholar 

  • von Allmen M, von Allmen M, Blatter A (1995) Laser-beam interactions with materials. Springer Series in Materials Science

Download references

Funding

This study was funded by FAPESP, with the grants 2013/05350-0 and (2018/11283-7), as well as CNPq and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.R., Correr, W., Mendonça, C.R. et al. Single-step printing of metallic nanoparticles in 2D micropatterns. J Nanopart Res 22, 260 (2020). https://doi.org/10.1007/s11051-020-04995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04995-4

Keywords

Navigation