Optical Remote Sensing in Lake Trasimeno: Understanding from Applications Across Diverse Temporal, Spectral and Spatial Scales

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Abstract

Under the current Anthropocene Epoch there is an urgent need to deliver high‐quality data, information and knowledge to the decision-making process for a sustainable management of environmental concerns, in particular for inland water. Most literature address the advantages brought by remote sensing (RS) techniques in operational monitoring and management of lakes. In the present work, optical RS is applied to a complex ecosystem, the turbid eutrophic shallow Lake Trasimeno (Italy). A first example of RS application addresses the use of high frequency spectroradiometric measurements collected by a WISPstation to retrieve intra-inter daily and seasonal dynamics of chlorophyll-a and phycocyanin. A second section focuses on long term trends of water quality by means of satellite data time series for the whole lake surface. Then we exploit the latest generation of hyperspectral satellite images (PRISMA and DESIS) utilizing the high spectral resolution and improving the accuracy of estimated lake water quality. Finally, high spatial resolution satellite data is used for a finer scale map** of bottom substrates. Application of these techniques improved scientific understanding on the timing, composition and distribution of phytoplankton blooms, the role of nutrients and climate drivers as well as changes in the extent and composition of aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Organisation for Economic Co-operation and Development (2001) OECD environmental strategy for the first decade of the 21st Century: adopted by OECD environmental ministers. OECD

    Google Scholar 

  2. Giovannini E (2008) Understanding economic statistics: an OECD perspective. OECD, Paris

    Google Scholar 

  3. Coicaud JM, Zhang J (2011) The OECD as a global data collection and policy analysis organization: some strengths and weaknesses. Global Pol 2(3):312–317

    Article  Google Scholar 

  4. Directive (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Europ Commun L327:1–72

    Google Scholar 

  5. Garrote L (2017) Managing water resources to adapt to climate change: facing uncertainty and scarcity in a changing context. Water Resour Manage 31(10):2951–2963

    Article  Google Scholar 

  6. Carvalho L, Mackay EB, Cardoso AC, Baattrup-Pedersen A, Birk S, Blackstock KL, Borics G, Borja A, Feld CK, Ferreira MT, Globevnik L (2019) Protecting and restoring Europe’s waters: an analysis of the future development needs of the water framework directive. Sci Total Environ 658:1228–1238

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S (2020) Global lake responses to climate change. Nat Rev Earth Environ 1(8):388–403

    Article  ADS  Google Scholar 

  8. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  ADS  Google Scholar 

  9. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54(6):2283–2297

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1991) Satellite monitoring of optically-active components of inland waters: an essential input to regional climate change impact studies. J Great Lakes Res 17(4):470–478

    Article  CAS  Google Scholar 

  11. Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B, Shi J, Dickinson R (2013) The role of satellite remote sensing in climate change studies. Nat Clim Chang 3(10):875–883

    Article  ADS  Google Scholar 

  12. Hu C, Lee Z, Ma R, Yu K, Li D, Shang S (2010) Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J Geophys Res: Oceans 115(C4)

    Google Scholar 

  13. Tyler AN, Hunter PD, Spyrakos E, Groom S, Constantinescu AM, Kitchen J (2016) Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci Total Environ 572:1307–1321

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Odermatt D, Gitelson A, Brando VE, Schaepman M (2012) Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens Environ 118:116–126

    Article  ADS  Google Scholar 

  15. Ogashawara I, Mishra DR, Mishra S, Curtarelli MP, Stech JL (2013) A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sens 5(10):4774–4798

    Article  ADS  Google Scholar 

  16. Gholizadeh MH, Melesse AM, Reddi LA (2016) Comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 16:1298

    Article  ADS  PubMed Central  Google Scholar 

  17. Greb S, Dekker AG, Binding C, Bernard S, Brockmann C, DiGiacomo P, Griffith D, Groom S, Hestir E, Hunter P, Kutser T (2018) Earth observations in support of global water quality monitoring. International Ocean-Colour Coordinating Group

    Google Scholar 

  18. Kutser T, Hedley J, Giardino C, Roelfsema C, Brando VE (2020) Remote sensing of shallow waters–a 50 year retrospective and future directions. Remote Sens Environ 240:111619

    Article  ADS  Google Scholar 

  19. Bresciani M, Pinardi M, Free G, Luciani G, Ghebrehiwot S, Laanen M, Giardino C et al (2020) The use of multisource optical sensors to study phytoplankton spatio-temporal variation in a Shallow Turbid Lake. Water 12(1):284

    Article  CAS  Google Scholar 

  20. Taticchi MI (1992) Studies on Lake Trasimeno and other water bodies in Umbria Region (Central Italy). In: Guilizzoni P, Tartari G, Giussani G (eds) Limnology in Italy. Tipografia Griggi, Baveno, Italy, pp 295–317

    Google Scholar 

  21. Carosi A, Ghetti L, Padula R, Lorenzoni M (2019) Potential effects of global climate change on fisheries in the Trasimeno Lake (Italy), with special reference to the goldfish Carassius auratus invasion and the endemic southern pike Esox cisalpinus decline. Fish Manage Ecol 26(6):500–511

    Article  Google Scholar 

  22. Deffenu L, Dragoni W (1978) Idrogeologia del Lago Trasimeno. Geologia Applicata e Idrogeologia 13:11–67

    Google Scholar 

  23. Dragoni W (2004) Il Lago Trasimeno e le variazioni climatiche (in Italian with English transl.) Provincia di Perugia, 60 pp

    Google Scholar 

  24. Frondini F, Dragoni W, Morgantini N, Donnini M, Cardellini C, Caliro S, Chiodini G et al (2019) An Endorheic Lake in a changing climate: geochemical investigations at Lake Trasimeno (Italy). Water 11(7):1319

    Article  CAS  Google Scholar 

  25. Ludovisi A, Gaino E, Bellezza M, Casadei S (2013) Impact of climate change on the hydrology of shallow Lake Trasimeno (Umbria, Italy): history, forecasting and management. Aquat Ecosyst Health Manage 16(2):190–197

    Article  CAS  Google Scholar 

  26. Ludovisi A, Gaino E (2010) Meteorological and water quality changes in Lake Trasimeno (Umbria, Italy) during the last fifty years. J Limnol 69(1):174–188

    Article  Google Scholar 

  27. Giardino C, Bresciani M, Villa P, Martinelli A (2010) Application of remote sensing in water resource management: the case study of Lake Trasimeno, Itally. Water Res manag 24(14):3885–3899

    Article  Google Scholar 

  28. Cingolani A, Charavgis F (2017) Valutazione dello stato ecologico e chimico dei corpi idrici lacustri (2013–2015). ARPA Umbria Technical report, 25 pp

    Google Scholar 

  29. Havens KE, Elia AC, Taticchi MI, Fulton RS (2009) Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628(1):165–175

    Article  CAS  Google Scholar 

  30. Salmaso N (2010) Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw Biol 55:825–846

    Article  Google Scholar 

  31. Lorenzoni M, Dolciami R, Ghetti L, Pedicillo G, Carosi A (2010) Fishery biology of the goldfish Carassius auratus (Linnaeus, 1758) in Lake Trasimeno (Umbria, Italy). Knowl Manag Aquat Ecosyst 396:01

    Article  Google Scholar 

  32. Coesel PFM, Kwakkestein R, Verschoor A (1978) Oligotrophication and eutrophication tendencies in some Dutch moorland pools, as reflected in their desmid flora. Hydrobiologia 61:21–31

    Article  Google Scholar 

  33. Pernthaler A, Pernthaler J (2005) Diurnal variation of cell proliferation in three bacterial taxa from coastal North Sea waters. Appl Environ Microbiol 71:4638–4644

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruiz-Gonzàlez C, Lefort T, Massana R, Simó R, Gasol JM (2012) Diel changes in bulk and single-cell bacterial heterotrophic activity in winter surface waters of the northwestern Mediterranean Sea. Limnol Oceanogr 57:29–42

    Article  ADS  Google Scholar 

  35. Ezra AG, Nwankwo DI (2001) Composition of phytoplankton algae in Gubi Reservoir, Bauchi, Nigeria. J Aquat Sci 16(2):115–118

    Google Scholar 

  36. Peters S, Laanen M, Groetsch P, Ghezehegn S, Poser K, Hommersom A, De Reus E, Spaias L (2018) WISP station: a new autonomous above water radiometer system. In: Proceedings of the ocean optics XXIV conference. Dubrovnik, Croatia, 7–12 October 2018

    Google Scholar 

  37. Giardino C, Bresciani M, Braga F, Fabbretto A, Ghirardi N, Pepe M, Brando VE et al (2020) First evaluation of PRISMA level 1 data for water applications. Sensors 20(16):4553

    Article  ADS  PubMed Central  Google Scholar 

  38. Gons HJ (1999) Optical teledetection of chlorophyll a in turbid inland waters. Environ Sci Technol 33:1127–1132

    Article  ADS  CAS  Google Scholar 

  39. Simis S (2006) Blue-green catastrophe: remote sensing of mass viral lysis of cyanobacteria. Ph.D. Thesis, Vrije University, Amsterdam

    Google Scholar 

  40. Wolfram G, Argillier C, de Bortoli J, Buzzi F, Dalmiglio A, Dokulil MT et al (2009) Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633:45–58

    Article  CAS  Google Scholar 

  41. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2013) nlme: Linear and nonlinear mixed effects models. R Package Version 3(1):111

    Google Scholar 

  42. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33

    Article  Google Scholar 

  43. R Core Team (2019) R: a language and environment for statistical computing. Vienna. R Foundation for Statistical Computing, Austria. https://www.R-project.org/

  44. Charavgis F, Cingolani A, Di Brizio M, Tozzi G, Rinaldi E, Stranieri P (2018) Qualita’ delle acque di balneazione dei laghi Umbri. ARPA, Umbria

    Google Scholar 

  45. Funari E, Manganelli M, Buratti FM, Testai E (2017) Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Sci Total Environ 598:867–880

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Hamilton DP, Carey CC, Arvola L, Arzberger P, Brewer C, Cole JJ, Gaiser E, Hanson PC, Ibelings BW, Jennings E (2015) A Global lake ecological observatory network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models. Inland Waters 5:49–56

    Article  Google Scholar 

  47. Charavgis F, Cingolani A, Di Brizio M, Rinaldi E, Tozzi G, Stranieri P (2020) Qualita’ delle acque di balneazione dei laghi Umbri, stagione balneare 2019. ARPA, Umbria

    Google Scholar 

  48. Crétaux J-F, Merchant CJ, Duguay C, Simis S, Calmettes B, Bergé-Nguyen M, Wu Y, Zhang D, Carrea L, Liu X, Selmes N, Warren M (2020) ESA Lakes climate change initiative (Lakes_cci): Lake products, Version 1.0. centre for environmental data analysis, 08 June 2020

    Google Scholar 

  49. Rogora M, Buzzi F, Dresti C, Leoni B, Lepori F, Mosello R et al (2018) Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824(1):33–50

    Article  CAS  Google Scholar 

  50. Salmaso N, Boscaini A, Capelli C, Cerasino L (2018) Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia 824(1):177–195

    Article  CAS  Google Scholar 

  51. McCune B (2006) Nonparametric multiplicative regression for habitat modeling. Oregon State University, Oregon

    Google Scholar 

  52. Yost AC (2008) Probabilistic modeling and map** of plant indicator species in a Northeast Oregon industrial forest, USA. Ecol Ind 8(1):46–56

    Article  Google Scholar 

  53. Ellis CJ, Coppins BJ, Dawson TP, Seaward MR (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Cons 140(3–4):217–235

    Article  Google Scholar 

  54. Nicolaou N, Constandinou TG (2016) a nonlinear causality estimator based on non-parametric multiplicative regression. Front Neuroinf 10

    Google Scholar 

  55. McCune B, Mefford MJ (2009) HyperNiche. In: Nonparametric multiplicative habitat modeling. MjM Software, Oregon, USA

    Google Scholar 

  56. Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62:1–28

    Google Scholar 

  57. Criado-Aldeanueva F, Soto-Navarro J (2020) Climatic Indices over the Mediterranean Sea: a review. Appl Sci 10(17):5790

    Article  CAS  Google Scholar 

  58. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45(5):1058–1066

    Article  ADS  Google Scholar 

  59. Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG et al (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Change Biol 13(7):1314–1326

    Article  ADS  Google Scholar 

  60. Rast M, Painter TH (2019) Earth observation imaging spectroscopy for terrestrial systems: An overview of its history, techniques, and applications of its missions. Surv Geophys 40:303–331

    Article  ADS  Google Scholar 

  61. Loizzo R, Guarini R, Longo F, Scopa T, Formaro R, Facchinetti C, Varacalli G (2018) PRISMA: the Italian hyperspectral mission. In: Proceedings of the international geoscience and remote sensing symposium on observing, understanding and forecasting the dynamics of our planet (IGARSS). Valencia, Spain, 22–27 July 2018

    Google Scholar 

  62. Alonso K, Bachmann M, Burch K, Carmona E, Cerra D, de los Reyes R, Dietrich D, Heiden U, Holderlin A, Ickes J et al (2019) Data products, quality and validation of the DLR Earth sensing imaging spectrometer (DESIS). Sensors 19:4471

    Article  ADS  CAS  PubMed Central  Google Scholar 

  63. Richter R, Schläpfer D (2018) Atmospheric/topographic correction for satellite imagery (ATCOR-2/3 User Guide, Version 9.3. ReSe Applications Schläpfer, Langeggweg, 3

    Google Scholar 

  64. Pepe M, Pompilio L, Gioli B, Busetto L, Boschetti M (2020) Detection and classification of non-photosynthetic vegetation from PRISMA hyperspectral data in croplands. Remote Sensing 12:3903

    Article  ADS  Google Scholar 

  65. Bracaglia M, Santoleri R, Volpe G, Colella S, Benincasa M, Brando VE (2020) A virtual geostationary ocean color sensor to analyze the coastal optical variability. Remote Sensing 12:1539

    Article  ADS  Google Scholar 

  66. Giardino C, Candiani G, Bresciani M, Lee Z, Gagliano S, Pepe M (2012) BOMBER: a tool for estimating water quality and bottom properties from remote sensing images. Comput Geosci 45:313–318

    Article  ADS  CAS  Google Scholar 

  67. Giardino C, Bresciani M, Valentini E, Gasperini L, Bolpagni R, Brando VE (2015) Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens Environ 157:48–57

    Article  ADS  Google Scholar 

  68. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophoto-metric equations. Limnol Oceanogr 12:343–346

    Article  ADS  CAS  Google Scholar 

  69. Giardino C, Bresciani M, Cazzaniga I, Schenk K, Rieger P, Braga F, Matta E, Brando VE (2014) Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors 14(12):24116–24131

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Niroumand-Jadidi M, Bovolo F, Bruzzone L, Gege P (2020) Physics-based bathymetry and water quality retrieval using planetscope imagery: Impacts of 2020 Covid-19 lockdown and 2019 extreme flood in the Venice Lagoon. Remote Sens 12(15):2381

    Article  ADS  Google Scholar 

  71. Doxani G, Papadopoulou M, Lafazani P, Pikridas C, Tsakiri-Strati M (2012) Shallow-water bathymetry over variable bottom types using multispectral Worldview-2 image. Int Archives Photogrammetry, Remote Sens Spatial Inf Sci 39(8):159–164

    Article  Google Scholar 

  72. Arsen A, Crétaux JF, Berge-Nguyen M, Del Rio RA (2014) Remote sensing-derived bathymetry of lake Poopó. Remote Sensing 6(1):407–420

    Article  ADS  Google Scholar 

  73. Halls J, Costin K (2016) Submerged and emergent land cover and bathymetric map** of estuarine habitats using worldView-2 and LiDAR imagery. Remote Sensing 8(9):718

    Article  ADS  Google Scholar 

  74. Fisher JR, Acosta EA, Dennedy-Frank PJ, Kroeger T, Boucher TM (2018) Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens Ecol Conserv 4(2):137–149

    Article  Google Scholar 

  75. Gigante D, Landucci F, Truffini A, Venanzoni R (2013) Phytosociological and ecological features of a dying-back reed bed at the Lake Trasimeno (central Italy). Archives Geobotany 14(1–2):81–89

    Google Scholar 

  76. Gigante D, Venanzoni R, Zuccarello V (2011) Reed die-back in southern Europe? a case study from Central Italy. CR Biol 334(4):327–336

    Article  Google Scholar 

  77. Sheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London, UK

    Google Scholar 

  78. Prigioni C, Balestrieri A, Remonti L (2005) Food habits of the coypu, Myocastor coypus, and its impact on aquatic vegetation in a freshwater habitat of NW Italy. Folia Zool 54(3):269–277

    Google Scholar 

  79. Souty-Grosset C, Anastácio PM, Aquiloni L, Banha F, Choquer J, Chucholl C, Tricarico E (2016) The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being. Limnologica 58:78–93

    Article  Google Scholar 

  80. Bresciani M, Stroppiana D, Fila G, Montagna M, Giardino C (2009) Monitoring reed vegetation in environmentally sensitive areas in Italy. Italian J Remote Sens 41(2):125–137

    Article  Google Scholar 

  81. Vermote EF, Tanré D, Deuze JL, Herman M, Morcette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35(3):675–686

    Article  ADS  Google Scholar 

  82. Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ Jr (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. Appl Opt 45(26):6762–6774

    Article  ADS  PubMed  Google Scholar 

  83. Lantz NJ, Wang J (2013) Object-based classification of Worldview-2 imagery for map** invasive common reed, Phragmites australis. Can J Remote Sens 39(4):328–340

    Article  Google Scholar 

Download references

Acknowledgements

This research is co-funded by ESA CCI LAKES project (GA n. 40000125030/18/I-NB) and by the Italian Space Agency with PRISCAV project (grant nr. 2019-5-HH.0) and by the H2020 EOMORES project (GA n. 730066) for the WISPstation. We would like to thank the “Cooperativa dei Pescatori del Trasimeno” for the support in field campaigns. Many thanks to Alessandra Cingolani, Fedra Charavgis and Valentina DellaBella from ARPA Umbria for useful discussions on research results. We are grateful to Luca Nicoletti and Luca Galli from ARPA Umbria for collecting water samples. We also thank the Province of Perugia for the availability to use the platform in Polvese Island used for the WISPstation. We are very grateful to Ettore Lopinto from ASI and to Uta Heiden and Nicole Pinnel from DLR for valuable discussions on PRISMA and DESIS products respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bresciani Mariano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mariano, B. et al. (2022). Optical Remote Sensing in Lake Trasimeno: Understanding from Applications Across Diverse Temporal, Spectral and Spatial Scales. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_3

Download citation

Publish with us

Policies and ethics

Navigation